1
|
Arnold RE, Saska J, Mesquita-Ribeiro R, Dajas-Bailador F, Taylor L, Lewis W, Argent S, Shao H, Houk KN, Denton RM. Total synthesis, biological evaluation and biosynthetic re-evaluation of Illicium-derived neolignans. Chem Sci 2024; 15:11783-11793. [PMID: 39092111 PMCID: PMC11290413 DOI: 10.1039/d4sc03232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 08/04/2024] Open
Abstract
We report the first total syntheses of simonsol F (3), simonsinol (5), fargenin (4), and macranthol (6) in addition to syntheses of simonsol C (2), simonsol G (1), and honokiol (14). The syntheses are based upon a phosphonium ylide-mediated cascade reaction and upon natural product isomerization reactions which proceed through Cope rearrangements of putative biosynthetic dienone intermediates. As a corollary of the natural product isomerization reactions, we propose an alternative biosynthesis of honokiol (14), simonsinol (5), and macranthol (6) which unites the natural products in this family under a single common precursor, chavicol (7). Finally, we demonstrate that simonsol C (2) and simonsol F (3) promote axonal growth in primary mouse cortical neurons.
Collapse
Affiliation(s)
- Robert E Arnold
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Jan Saska
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | | | | | - Laurence Taylor
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - William Lewis
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Stephen Argent
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Huiling Shao
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Kendall N Houk
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Ross M Denton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| |
Collapse
|
2
|
Parui N, Mandal T, Maiti S, Dash J. Efficient Synthesis of Cyclohepta[b]indoles and Cyclohepta[b]indole-Indoline Conjugates via RCM, Hydrogenation, and Acid-Catalyzed Ring Expansion: A Biomimetic Approach. Chemistry 2024; 30:e202401059. [PMID: 38623002 DOI: 10.1002/chem.202401059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Cyclohepta[b]indoles, prevalent in natural products and pharmaceuticals, are conventionally accessed via metal or Lewis acid-mediated cycloadditions with prefunctionalized substrates. Our study introduces an innovative sequential catalytic assembly for synthesizing cyclohepta[b]indoles from readily available isatin derivatives. The process involves three catalytic sequences: ring-closing metathesis, catalytic hydrogenation, and acid-catalyzed ring expansion. The RCM of 2,2-dialkene-3-oxindoles, formed by butenyl Grignard addition to 3-allyl-3-hydroxy-2-oxindoles, yields versatile spirocyclohexene-3-oxindole derivatives. These derivatives undergo further transformations, including dibromination, dihydroxylation, epoxidation, Wacker oxidation at the double bond. Hydrogenation of spirocyclohexene-3-oxindole yields spirocyclohexane-3-oxindoles. Their subsequent acid-catalyzed ring expansion/aromatization, dependent on the acid catalyst, results in either cyclohepta[b]indoles or cyclohepta[b]indole-indoline conjugates, adding a unique synthetic dimension. The utility of this methodology is exemplified through the synthesis of an A-FABP inhibitor, showcasing its potential in pharmaceutical applications.
Collapse
Affiliation(s)
- Nabin Parui
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Tirtha Mandal
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Sandip Maiti
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| | - Jyotirmayee Dash
- School of chemical sciences, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
| |
Collapse
|
3
|
Fu P, Liu T, Shen Y, Lei X, Xiao T, Chen P, Qiu D, Wang Z, Zhang Y. Divergent Total Syntheses of Illicium Sesquiterpenes through Late-Stage Skeletal Reorganization. J Am Chem Soc 2023; 145:18642-18648. [PMID: 37562030 DOI: 10.1021/jacs.3c06442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We disclose unified, protecting-group-free, bioinspired divergent total syntheses of eight allo-cedrane and seco-prezizaane Illicium sesquiterpenes and formal syntheses of five anislactone sesquiterpenes. The efficiency of our approach derives from rapid access to the 15-carbon tricyclic carboxylic acid through cationic epoxide-ene cyclization and HAT oxygenation, transformation of this intermediate into three distinct tricyclic precursors via Lewis acid-mediated skeletal reorganizations, subsequent programmed oxidation level enhancement, and a biomimetic oxidation-initiated skeletal rearrangement cascade. Consequently, we created a synthetic correlation map of the three most prevalent Illicium sesquiterpene families.
Collapse
Affiliation(s)
- Pengfei Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tianjie Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Dongsheng Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Etling C, Tedesco G, Di Marco A, Kalesse M. Asymmetric Total Synthesis of Illisimonin A. J Am Chem Soc 2023; 145:7021-7029. [PMID: 36926847 PMCID: PMC10064331 DOI: 10.1021/jacs.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The discovery of illisimonin A in 2017 extended the structural repertoire of the Illicium sesquiterpenoids─a class of natural products known for their high oxidation levels and neurotrophic properties─with a new carbon backbone combining the strained trans-pentalene and norbornane substructures. We report an asymmetric total synthesis of (-)-illisimonin A that traces its tricyclic carbon framework back to a spirocyclic precursor, generated by a tandem-Nazarov/ene cyclization. As crucial link between the spirocyclic key intermediate and illisimonin A, a novel approach for the synthesis of tricyclo[5.2.1.01,5]decanes via radical cyclization was explored. This approach was applied in a two-stage strategy consisting of Ti(III)-mediated cyclization and semipinacol rearrangement to access the natural product's carbon backbone. These key steps were combined with carefully orchestrated C-H oxidations to establish the dense oxidation pattern.
Collapse
Affiliation(s)
- Christoph Etling
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Giada Tedesco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Anna Di Marco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
5
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Shuming Chen
- Department of Chemistry and Biochemistry Oberlin College 119 Woodland Street Oberlin OH 44074 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
6
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022; 61:e202114514. [PMID: 34820990 PMCID: PMC8748398 DOI: 10.1002/anie.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/19/2023]
Abstract
A strategy to control the diastereoselectivity of bond formation at a prochiral attached-ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non-covalent interactions to control re- vs. si- facial selectivity en route to fully substituted attached-rings. This divergency reflects differential engagement of one rotational isomer of the attached-ring system. The successful synthesis of an erythro subtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A.
Collapse
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Shen Y, Li L, Xiao X, Yang S, Hua Y, Wang Y, Zhang YW, Zhang Y. Site-Specific Photochemical Desaturation Enables Divergent Syntheses of Illicium Sesquiterpenes. J Am Chem Soc 2021; 143:3256-3263. [DOI: 10.1021/jacs.1c00525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Linbin Li
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuhui Hua
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinglu Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
8
|
Kelley AM, Haywood RD, White JC, Petersen KS. Enantioselective Desymmetrizations of Diesters to Synthesize Fully Substituted Chiral Centers of 3,4‐Dihydrocoumarins and Related Compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202000312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amber M. Kelley
- Department of Chemistry and BiochemistryUniversity of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Rhashanda D. Haywood
- Department of Chemistry and BiochemistryUniversity of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Jonathan C. White
- Department of Chemistry and BiochemistryUniversity of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Kimberly S. Petersen
- Department of Chemistry and BiochemistryUniversity of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| |
Collapse
|
9
|
Semi-Synthesis of C-Ring Cyclopropyl Analogues of Fraxinellone and Their Insecticidal Activity Against Mythimna separata Walker. Molecules 2020; 25:molecules25051109. [PMID: 32131461 PMCID: PMC7179169 DOI: 10.3390/molecules25051109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Fraxinellone (1) is a naturally occurring degraded limonoid isolated from Meliaceae and Rutaceae plants. As a potential natural-product-based insecticidal agent, fraxinellone has been structurally modified to improve its activity. Furan ring of fraxinellone is critical in exhibiting its insecticidal activity, but with few modifications. Herein, C-ring-modified cyclopropyl analogues were semi-synthesized by Rh(II)-catalyzed cyclopropanation. The structures of the target compounds were well characterized by NMR and HRMS. The precise three-dimensional structural information of 3a was established by X-ray crystallography. Their insecticidal activity was evaluated against Mythimna separata Walker by a leaf-dipping method. Compound 3c exhibited stronger insecticidal activity than 1 and toosendanin against M. separata with teratogenic symptoms during the different periods, implying that cyclopropanation of the furan ring could strengthen the insecticidal activity of fraxinellone.
Collapse
|
10
|
Davison EK, Brimble MA. Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol 2019; 52:1-8. [DOI: 10.1016/j.cbpa.2018.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
|
11
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
12
|
Wang Y, Li Y, Lian M, Zhang J, Liu Z, Tang X, Yin H, Meng Q. Asymmetric α-alkylation of cyclic β-keto esters and β-keto amides by phase-transfer catalysis. Org Biomol Chem 2019; 17:573-584. [DOI: 10.1039/c8ob02669f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A facile and efficient asymmetric α-alkylation of β-keto esters and β-keto amides has been achieved by phase-transfer catalysis.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- PR China
| | - Yueyun Li
- Xinxiang Central Hospital
- Xinxiang Medical University
- Xinxiang
- PR China
| | - Mingming Lian
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- P. R. China
| | - Jixia Zhang
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- PR China
| | - Zhaomin Liu
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- PR China
| | - Xiaofei Tang
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Hang Yin
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Qingwei Meng
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P. R. China
| |
Collapse
|
13
|
Xiang P, Cao QH, Dong QM, Yang XJ, Tang JJ, Bai H. Furan-site transformations of obacunone as potent insecticidal agents. Heliyon 2018; 4:e01064. [PMID: 30582063 PMCID: PMC6298901 DOI: 10.1016/j.heliyon.2018.e01064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/24/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022] Open
Abstract
Furan ring is a key pharmacophore for insecticidal activity of limoninoids. To develop natural-product-based insecticidal agents, a series of furan-site transformations (2, 3 and 3a-j) of obacunone were synthesized by selective bromination and following coupling reactions without altering other functional groups. Bioassays indicated that derivatives 3e, 3f and 3j displayed more potent insecticidal activity than obacunone and toosendanin against the instar larvae of Mythimna separate Walker. Besides, their structure-activity relationships were discussed.
Collapse
Affiliation(s)
- Ping Xiang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, PR China.,Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, PR China
| | - Qing-Hao Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Qing-Miao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Jun Yang
- School of Chemistry & Chemical Engineering, Yanan University, Yanan 716000, Shaanxi, PR China
| | - Jiang-Jiang Tang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, PR China.,Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Hongjin Bai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, PR China.,Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production & Construction Corps, Tarim University, Alar 843300, PR China
| |
Collapse
|
14
|
Condakes ML, Novaes LFT, Maimone TJ. Contemporary Synthetic Strategies toward seco-Prezizaane Sesquiterpenes from Illicium Species. J Org Chem 2018; 83:14843-14852. [PMID: 30525614 PMCID: PMC6467809 DOI: 10.1021/acs.joc.8b02802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the elucidation of the structure of anisatin in the late 1960s, sesquiterpene lactones from various Illicium species of plants have captivated synthetic chemists worldwide, resulting in a large body of synthetic work. In particular, Illicium sesquiterpenes containing the seco-prezizaane carbon framework have seen immense interest in recent years owing to desirable structural and medicinal attributes. This synopsis will focus on recently developed synthetic strategies to access these compact, highly oxidized terpenoids.
Collapse
Affiliation(s)
- Matthew L. Condakes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Luiz F. T. Novaes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| |
Collapse
|
15
|
Dong QM, Dong S, Shen C, Cao QH, Song MY, He QR, Wang XL, Yang XJ, Tang JJ, Gao JM. Furan-Site Bromination and Transformations of Fraxinellone as Insecticidal Agents Against Mythimna separata Walker. Sci Rep 2018; 8:8372. [PMID: 29849138 PMCID: PMC5976728 DOI: 10.1038/s41598-018-26747-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 02/02/2023] Open
Abstract
Furan ring of limoninoids is critical in exhibiting insecticidal activity. Herein, fraxinellone (1) was used as a template of furan-containing natural products and a series of its derivatives was synthesized by selective bromination in good yields on gram-scale and following Suzuki-Miyaura or Sonogashira coupling reactions in moderate to good yields. Bromination of limonin (9) was also accomplished without altering other functional groups in high yield. Furthermore, an evaluation of insecticidal activity against the instar larvae of Mythimna separata showed that derivatives 2, 3b, 3g, 5a, 5d and 5h displayed more potent insecticidal activity than 1 and toosendanin.
Collapse
Affiliation(s)
- Qing-Miao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Shuai Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Cheng Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Qing-Hao Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Ming-Yu Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Xiao-Ling Wang
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, 721007, Shaanxi, P.R. China.
| | - Xiao-Jun Yang
- School of Chemistry & Chemical Engineering, Yanan University, Yanan, 716000, Shaanxi, P.R. China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, 721007, Shaanxi, P.R. China
| |
Collapse
|
16
|
Condakes M, Hung K, Harwood SJ, Maimone TJ. Total Syntheses of (-)-Majucin and (-)-Jiadifenoxolane A, Complex Majucin-Type Illicium Sesquiterpenes. J Am Chem Soc 2017; 139:17783-17786. [PMID: 29148748 PMCID: PMC5729088 DOI: 10.1021/jacs.7b11493] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 02/08/2023]
Abstract
We report the first chemical syntheses of both (-)-majucin and (-)-jiadifenoxolane A via 10 net oxidations from the ubiquitous terpene (+)-cedrol. Additionally, this approach allows for access to other majucin-type sesquiterpenes, like (-)-jiadifenolide, (-)-jiadifenin, and (-)-(1R,10S)-2-oxo-3,4-dehydroxyneomajucin (ODNM) along the synthetic pathway. Site-selective aliphatic C(sp3)-H bond oxidation reactions serve as the cornerstone of this work which offers access to highly oxidized natural products from an abundant and renewable terpene feedstock.
Collapse
Affiliation(s)
- Matthew
L. Condakes
- Department of Chemistry, University
of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Kevin Hung
- Department of Chemistry, University
of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Stephen J. Harwood
- Department of Chemistry, University
of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Thomas J. Maimone
- Department of Chemistry, University
of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Ohtawa M, Krambis MJ, Cerne R, Schkeryantz JM, Witkin JM, Shenvi RA. Synthesis of (-)-11-O-Debenzoyltashironin: Neurotrophic Sesquiterpenes Cause Hyperexcitation. J Am Chem Soc 2017. [PMID: 28644021 DOI: 10.1021/jacs.7b04206] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
11-O-Debenzoyltashironin (1) is a member of the neurotrophic sesquiterpenes, trace plant metabolites that enhance neurite outgrowth in cultured neurons. We report its synthesis in six steps from a butenolide heterodimer via its likely biosynthetic precursor, 3,6-dideoxy-10-hydroxypseudoanisatin, here identified as the chain tautomer of 1. Access to the tashironin chemotype fills a gap in a comparison set of convulsive and neurotrophic sesquiterpenes, which we hypothesized to share a common target. Here we show that both classes mutually hyperexcite rat cortical neurons, consistent with antagonism of inhibitory channels and a mechanism of depolarization-induced neurite outgrowth.
Collapse
Affiliation(s)
- Masaki Ohtawa
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Michael J Krambis
- Eli Lilly and Company , Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Rok Cerne
- Eli Lilly and Company , Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jeffrey M Schkeryantz
- Eli Lilly and Company , Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jeffrey M Witkin
- Eli Lilly and Company , Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
18
|
Wang B, Huang W, Zhou J, Tang X, Chen Y, Peng C, Han B. Drug design based on pentaerythritol tetranitrate reductase: synthesis and antibacterial activity of Pogostone derivatives. Org Biomol Chem 2017; 15:6548-6556. [DOI: 10.1039/c7ob01429e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We performed molecular docking studies of Pogostone with PETNR and analyzed structure–activity relationships, which guided the structure design and the subsequent facile organocatalytic synthesis of Pogostone derivatives.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jin Zhou
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Xue Tang
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Yang Chen
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Bo Han
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|