1
|
Gómez-Bra A, Gude L, Arias-Pérez MS. Synthesis, structural study and antitumor activity of novel alditol-based imidazophenanthrolines (aldo-IPs). Bioorg Med Chem 2024; 99:117563. [PMID: 38215623 DOI: 10.1016/j.bmc.2023.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.
Collapse
Affiliation(s)
- Ana Gómez-Bra
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain; Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - María-Selma Arias-Pérez
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
2
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
3
|
Yang T, Valavalkar A, Romero-Arenas A, Dasgupta A, Then P, Chettri A, Eggeling C, Ros A, Pischel U, Dietzek-Ivanšić B. Excited-State Dynamics in Borylated Arylisoquinoline Complexes in Solution and in cellulo. Chemistry 2023; 29:e202203468. [PMID: 36477948 DOI: 10.1002/chem.202203468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Two four-coordinate organoboron N,C-chelate complexes with different functional terminals on the PEG chains are studied with respect to their photophysical properties within human MCF-7 cells. Their excited-state properties are characterized by time-resolved pump-probe spectroscopy and fluorescence lifetime microscopy. The excited-state relaxation dynamics of the two complexes are similar when studied in DMSO. Aggregation of the complexes with the carboxylate terminal group is observed in water. When studying the light-driven excited-state dynamics of both complexes in cellulo, i. e., after being taken up into human MCF-7 cells, both complexes show different features depending on the nature of the anchoring PEG chains. The lifetime of a characteristic intramolecular charge-transfer state is significantly shorter when studied in cellulo (360±170 ps) as compared to in DMSO (∼960 ps) at 600 nm for the complexes with an amino group. However, the kinetics of the complexes with the carboxylate group are in line with those recorded in DMSO. On the other hand, the lifetimes of the fluorescent state are almost identical for both complexes in cellulo. These findings underline the importance to evaluate the excited-state properties of fluorophores in a complex biological environment in order to fully account for intra- and intermolecular effects governing the light-induced processes in functional dyes.
Collapse
Affiliation(s)
- Tingxiang Yang
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Abha Valavalkar
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Antonio Romero-Arenas
- Institute for Chemical Research, CSIC-US and Innovation Centre in Advanced Chemistry, ORFEO-CINQA C/Américo Vespucio 49, 41092, Seville, Spain
| | - Anindita Dasgupta
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Patrick Then
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Avinash Chettri
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena (Germany).,Jena Center for Soft Matter (JCSM), Philosophenweg 7, D-07743, Jena
| | - Abel Ros
- Institute for Chemical Research, CSIC-US and Innovation Centre in Advanced Chemistry, ORFEO-CINQA C/Américo Vespucio 49, 41092, Seville, Spain
| | - Uwe Pischel
- CIQSO-Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen, s/n, 21071, Huelva, Spain
| | - Benjamin Dietzek-Ivanšić
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Philosophenweg 7, D-07743, Jena
| |
Collapse
|
4
|
Pandya N, Singh M, Rani R, Kumar V, Kumar A. G-quadruplex-mediated specific recognition, stabilization and transcriptional repression of bcl-2 by small molecule. Arch Biochem Biophys 2023; 734:109483. [PMID: 36513132 DOI: 10.1016/j.abb.2022.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
The presence of the G-quadruplex (G4) structure in the promoter region of the human bcl-2 oncogenes makes it a promising target for developing anti-cancer therapeutics. Bcl-2 inhibits apoptosis, and its frequent overexpression in cancer cells contributes to tumor initiation, progression, and resistance to therapy. Small molecules that can specifically bind to bcl-2 G4 with high affinity and selectivity are remaining elusive. Here, we report that small molecule 1,3-bis-) furane-2yl-methylidene-amino) guanidine (BiGh) binds to bcl-2 G4 DNA structure with very high affinity and selectivity over other genomic G4 DNA structures and duplex DNA. BiGh stabilizes folded parallel conformation of bcl-2 G4 via non-covalent and electrostatic interactions and increases the thermal stabilization up to 15 °C. The ligand significantly suppresses the bcl-2 transcription in HeLa cells by a G4-dependent mechanism and induces cell cycle arrest which promotes apoptosis. The in silico ADME profiling confirms the potential 'drug-likeness' of BiGh. Our results showed that BiGh stabilizes the bcl-2 G-quadruplex motif, downregulates the bcl-2 gene transcription as well as translation process in cervical cancer cells, and exhibits potential anti-cancer activity. This work provides a potential platform for the development of lead compound(s) as G4 stabilizers with drug-like properties of BiGh for cancer therapeutics.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Mamta Singh
- Amity Institute of Biotechnology, Amity University Noida, Uttar Pradesh, 201303, India
| | - Reshma Rani
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Vinit Kumar
- Amity Institute of Biotechnology, Amity University Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
5
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
6
|
Zonjić I, Radić Stojković M, Crnolatac I, Tomašić Paić A, Pšeničnik S, Vasilev A, Kandinska M, Mondeshki M, Baluschev S, Landfester K, Glavaš-Obrovac L, Jukić M, Kralj J, Brozovic A, Horvat L, Tumir LM. Styryl dyes with N-Methylpiperazine and N-Phenylpiperazine Functionality: AT-DNA and G-quadruplex binding ligands and theranostic agents. Bioorg Chem 2022; 127:105999. [DOI: 10.1016/j.bioorg.2022.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
7
|
Gratal P, Arias-Pérez MS, Gude L. 1H-imidazo[4,5-f][1,10]phenanthroline carbohydrate conjugates: synthesis, DNA interactions and cytotoxic activity. Bioorg Chem 2022; 125:105851. [DOI: 10.1016/j.bioorg.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
|
8
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
9
|
Gurung SK, Kumari S, Dana S, Mandal K, Sen S, Mukhopadhyay P, Mondal N. DNA damage, cell cycle perturbation and cell death by naphthalene diimide derivative in gastric cancer cells. Chem Biol Interact 2022; 358:109881. [DOI: 10.1016/j.cbi.2022.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
10
|
Structured Waters Mediate Small Molecule Binding to G-Quadruplex Nucleic Acids. Pharmaceuticals (Basel) 2021; 15:ph15010007. [PMID: 35056064 PMCID: PMC8781208 DOI: 10.3390/ph15010007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023] Open
Abstract
The role of G-quadruplexes in human cancers is increasingly well-defined. Accordingly, G-quadruplexes can be suitable drug targets and many small molecules have been identified to date as G-quadruplex binders, some using computer-based design methods and co-crystal structures. The role of bound water molecules in the crystal structures of G-quadruplex-small molecule complexes has been analyzed in this study, focusing on the water arrangements in several G-quadruplex ligand complexes. One is the complex between the tetrasubstituted naphthalene diimide compound MM41 and a human intramolecular telomeric DNA G-quadruplex, and the others are in substituted acridine bimolecular G-quadruplex complexes. Bridging water molecules form most of the hydrogen-bond contacts between ligands and DNA in the parallel G-quadruplex structures examined here. Clusters of structured water molecules play essential roles in mediating between ligand side chain groups/chromophore core and G-quadruplex. These clusters tend to be conserved between complex and native G-quadruplex structures, suggesting that they more generally serve as platforms for ligand binding, and should be taken into account in docking and in silico studies.
Collapse
|
11
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
12
|
Street STG, Peñalver P, O'Hagan MP, Hollingworth GJ, Morales JC, Galan MC. Imide Condensation as a Strategy for the Synthesis of Core-Diversified G-Quadruplex Ligands with Anticancer and Antiparasitic Activity*. Chemistry 2021; 27:7712-7721. [PMID: 33780044 PMCID: PMC8251916 DOI: 10.1002/chem.202100040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/22/2022]
Abstract
A facile imide coupling strategy for the one-step preparation of G-quadruplex ligands with varied core chemistries is described. The G-quadruplex stabilization of a library of nine compounds was examined using FRET melting experiments, and CD, UV-Vis, fluorescence and NMR titrations, identifying several compounds that were capable of stabilizing G-quadruplex DNA with interesting selectivity profiles. The best G4 ligand was identified as compound 3, which was based on a perylene scaffold and exhibited 40-fold selectivity for a telomeric G-quadruplex over duplex DNA. Surprisingly, a tetra-substituted flexible core, compound 11, also exhibited selective stabilization of G4 DNA over duplex DNA. The anticancer and antiparasitic activity of the library was also examined, with the lead compound 3 exhibiting nanomolar inhibition of Trypanosoma brucei with 78-fold selectivity over MRC5 cells. The cellular localization of this compound was also studied via fluorescence microscopy. We found that uptake was time dependant, with localization outside the nucleus and kinetoplast that could be due to strong fluorescence quenching in the presence of small amounts of DNA.
Collapse
Affiliation(s)
- Steven T. G. Street
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of VictoriaDr. S. T. G. StreetVictoriaBC V8P 5C2Canada
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| |
Collapse
|
13
|
Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D. Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs. J Med Chem 2021; 64:3578-3603. [PMID: 33751881 PMCID: PMC8041303 DOI: 10.1021/acs.jmedchem.1c00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In the context of
developing efficient anticancer therapies aimed
at eradicating any sort of tumors, G-quadruplexes represent excellent
targets. Small molecules able to interact with G-quadruplexes can
interfere with cell pathways specific of tumors and common to all
cancers. Naphthalene diimides
(NDIs) are among the most promising, putative anticancer G-quadruplex-targeting
drugs, due to their ability to simultaneously target multiple G-quadruplexes
and their strong, selective in vitro and in vivo anticancer activity.
Here, all the available biophysical, biological, and structural data
concerning NDIs targeting G-quadruplexes were systematically analyzed.
Structure–activity correlations were obtained by analyzing
biophysical data of their interactions with G-quadruplex targets and
control duplex structures, in parallel to biological data concerning
the antiproliferative activity of NDIs on cancer and normal cells.
In addition, NDI binding modes to G-quadruplexes were discussed in
consideration of the structures and properties of NDIs by in-depth
analysis of the available structural models of G-quadruplex/NDI complexes.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.,Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
14
|
Pirota V, Platella C, Musumeci D, Benassi A, Amato J, Pagano B, Colombo G, Freccero M, Doria F, Montesarchio D. On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. Int J Biol Macromol 2020; 166:1320-1334. [PMID: 33166559 DOI: 10.1016/j.ijbiomac.2020.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
To selectively target telomeric G-quadruplex (G4) DNA, monomeric and dimeric naphthalene diimides (NDIs) were investigated as binders of multimeric G4 structures able to discriminate duplex DNA. These NDIs were analysed by the affinity chromatography-based screening G4-CPG (G-quadruplex on Controlled Pore Glass), using the sequence d[AGGG(TTAGGG)7] (tel46), folding into two consecutive G4s, as model of the human telomeric G4 multimer. In parallel, a telomeric G4 monomer (tel26) and a duplex structure (ds27) were used as controls. According to G4-CPG screening, NDI-5 proved to be the best ligand in terms of dimeric G4 vs. duplex DNA selectivity and was analysed by circular dichroism (CD), gel electrophoresis, isothermal titration calorimetry (ITC) and fluorescence spectroscopy in its interactions with tel46. NDI-5 strongly binds and stabilizes tel46 G4, favouring a hybrid folding in K+-containing buffer. Under these conditions, the binding process comprises a first event involving three molecules of NDI-5 and a second one in which other six molecules bind to the DNA. In a metal cation-free system, NDI-5 induces tel46 G4 folding, as indicated by CD and PAGE, favouring an antiparallel structuring. Docking simulations showed that NDI-5 can effectively bind to the pocket between two G4 units, representing a promising ligand for multimeric G4s.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
15
|
Zhirov AM, Kovalev DA, Ulshina DV, Pisarenko SV, Demidov OP, Borovlev IV. Diazapyrenes: interaction with nucleic acids and biological activity. Chem Heterocycl Compd (N Y) 2020; 56:674-693. [PMID: 32836316 PMCID: PMC7366485 DOI: 10.1007/s10593-020-02717-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The review summarizes data on the practical aspects of the interaction of nucleic acids with diazapyrene derivatives. The information on biological activity is given and the probable mechanisms underlying the action of diazapyrenes are analyzed. It contains 119 references.
Collapse
Affiliation(s)
- Andrey M. Zhirov
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Dmitry A. Kovalev
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Diana V. Ulshina
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Sergey V. Pisarenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Oleg P. Demidov
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| | - Ivan V. Borovlev
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| |
Collapse
|
16
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
17
|
O'Hagan MP, Peñalver P, Gibson RSL, Morales JC, Galan MC. Stiff-Stilbene Ligands Target G-Quadruplex DNA and Exhibit Selective Anticancer and Antiparasitic Activity. Chemistry 2020; 26:6224-6233. [PMID: 32030823 PMCID: PMC7318697 DOI: 10.1002/chem.201905753] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/16/2022]
Abstract
G-quadruplex nucleic acid structures have long been studied as anticancer targets whilst their potential in antiparasitic therapy has only recently been recognized and barely explored. Herein, we report the synthesis, biophysical characterization, and in vitro screening of a series of stiff-stilbene G4 binding ligands featuring different electronics, side-chain chemistries, and molecular geometries. The ligands display selectivity for G4 DNA over duplex DNA and exhibit nanomolar toxicity against Trypasanoma brucei and HeLa cancer cells whilst remaining up to two orders of magnitude less toxic to non-tumoral mammalian cell line MRC-5. Our study demonstrates that stiff-stilbenes show exciting potential as the basis of selective anticancer and antiparasitic therapies. To achieve the most efficient G4 recognition the scaffold must possess the optimal electronics, substitution pattern and correct molecular configuration.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS Granada, Avenida del Conocimiento 1718016Armilla, GranadaSpain
| | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS Granada, Avenida del Conocimiento 1718016Armilla, GranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
18
|
Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. Int J Mol Sci 2020; 21:ijms21061964. [PMID: 32183038 PMCID: PMC7139804 DOI: 10.3390/ijms21061964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
A focused library of newly designed monomeric and dimeric naphthalene diimides (NDIs) was analyzed in its ability to recognize specific G-quadruplex (G4) structures discriminating duplex DNA. The best G4 ligands—according to an affinity chromatography-based screening method named G4-CPG—were tested on human cancer and healthy cells, inducing DNA damage at telomeres, and in parallel, showing selective antiproliferative activity on HeLa cancer cells with IC50 values in the low nanomolar range. CD and fluorescence spectroscopy studies allowed detailed investigation of the interaction in solution with different G4 and duplex DNA models of the most promising NDI of the series, as determined by combining the biophysical and biological assays’ data.
Collapse
|
19
|
Insuasty A, Carrara S, Tang L, Forsyth C, Hogan CF, McNeill CR, Langford SJ. A Family of Heterocyclic Naphthalene Diimide (NDI) Analogues: Comparing Parent Isoquinoline Diimides and Phthalazine Diimides with NDI. Chempluschem 2019; 84:1638-1642. [DOI: 10.1002/cplu.201900596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Alberto Insuasty
- Department of Chemistry and Biotechnology Swinburne University of Technology Hawthorn, VIC 3122 Australia
| | - Serena Carrara
- La Trobe Institute for Molecular Science La Trobe University Melbourne, VIC 3086 Australia
| | - Linjing Tang
- Department of Materials Science and Engineering Monash University Clayton, Victoria 3800 Australia
| | - Craig Forsyth
- School of Chemistry Monash University Clayton, VIC 3800 Australia
| | - Conor F. Hogan
- La Trobe Institute for Molecular Science La Trobe University Melbourne, VIC 3086 Australia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering Monash University Clayton, Victoria 3800 Australia
| | - Steven J. Langford
- Department of Chemistry and Biotechnology Swinburne University of Technology Hawthorn, VIC 3122 Australia
| |
Collapse
|
20
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
21
|
Takeuchi R, Zou T, Wakahara D, Nakano Y, Sato S, Takenaka S. Cyclic Naphthalene Diimide Dimer with a Strengthened Ability to Stabilize Dimeric G-Quadruplex. Chemistry 2019; 25:8691-8695. [PMID: 31069868 DOI: 10.1002/chem.201901468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/06/2019] [Indexed: 11/08/2022]
Abstract
A new type of dimeric cyclic naphthalene diimide derivatives (cNDI-dimers) carrying varied linker length were designed and synthesized to recognize dimeric G-quadruplex structures. All of the cNDI-dimers exhibited a high preference for recognizing G-quadruplex structures, and significantly enhanced the thermal stability of the dimeric G-quadruplex structure over the cNDI monomer by increasing the melting temperature by more than 23 °C, which indicated the strengthened ability of cNDI dimers for stabilizing dimeric G-quadruplex. cNDI dimers also showed a stronger ability to inhibit telomerase activity and stop telomere DNA elongation than cNDI monomer, which showed an improved anticancer potentiality for further therapeutic application.
Collapse
Affiliation(s)
- Ryusuke Takeuchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Tingting Zou
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Daiki Wakahara
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Yoshifumi Nakano
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Shinobu Sato
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| | - Shigeori Takenaka
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, Fukuoka, 804-8550, Japan
| |
Collapse
|
22
|
O'Hagan MP, Haldar S, Duchi M, Oliver TAA, Mulholland AJ, Morales JC, Galan MC. A Photoresponsive Stiff-Stilbene Ligand Fuels the Reversible Unfolding of G-Quadruplex DNA. Angew Chem Int Ed Engl 2019; 58:4334-4338. [PMID: 30682233 PMCID: PMC6563076 DOI: 10.1002/anie.201900740] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/14/2022]
Abstract
The polymorphic nature of G-quadruplex (G4) DNA structures points to a range of potential applications in nanodevices and an opportunity to control G4 in biological settings. Light is an attractive means for the regulation of oligonucleotide structure as it can be delivered with high spatiotemporal precision. However, surprisingly little attention has been devoted towards the development of ligands for G4 that allow photoregulation of G4 folding. We report a novel G4-binding chemotype derived from stiff-stilbene. Surprisingly however, whilst the ligand induces high stabilization in the potassium form of human telomeric DNA, it causes the unfolding of the same G4 sequence in sodium buffer. This effect can be reversed on demand by irradiation with 400 nm light through deactivation of the ligand by photo-oxidation. By fuelling the system with the photolabile ligand, the conformation of G4 DNA was switched five times.
Collapse
Affiliation(s)
| | - Susanta Haldar
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| | - Marta Duchi
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS GranadaAvenida del Conocimiento 1718016ArmillaGranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| |
Collapse
|
23
|
Goskulwad SP, More VG, Kobaisi MA, Bhosale RS, La DD, Antolasic F, Bhosale SV, Bhosale SV. Solvent‐Induced Self‐Assembly of Naphthalenediimide Conjugated to Tetraphenylethene through D‐ and L‐Alanine. ChemistrySelect 2019. [DOI: 10.1002/slct.201900087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Santosh P. Goskulwad
- Polymers and Functional Materials DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007, Telangana India
- Academy of Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vishal G. More
- Department of ChemistryGoa University, Taleigao Plateau Goa- 403206 India
| | - Mohammad Al Kobaisi
- Department of Chemistry and BiotechnologyFSETSwinburne University of Technology Hawthorn VIC - 3122 Australia
| | - Rajesh S. Bhosale
- Department of ChemistryIndrashil University, Kadi Mehsana- 382740, Gujarat India
| | - Dung Duc La
- Institute of Chemistry and Materials 17 Hoang Sam, Cay Giay Hanoi Vietnam
| | - Frank Antolasic
- School of ScienceRoyal Melbourne Institute of Technology University Melbourne, VIC 3001 Australia
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials DivisionCSIR-Indian Institute of Chemical Technology Hyderabad- 500007, Telangana India
- Academy of Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | | |
Collapse
|
24
|
O'Hagan MP, Haldar S, Duchi M, Oliver TAA, Mulholland AJ, Morales JC, Galan MC. A Photoresponsive Stiff‐Stilbene Ligand Fuels the Reversible Unfolding of G‐Quadruplex DNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Susanta Haldar
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | - Marta Duchi
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS Granada Avenida del Conocimiento 17 18016 Armilla Granada Spain
| | - M. Carmen Galan
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| |
Collapse
|
25
|
Saha P, Panda D, Dash J. The application of click chemistry for targeting quadruplex nucleic acids. Chem Commun (Camb) 2019; 55:731-750. [PMID: 30489575 DOI: 10.1039/c8cc07107a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the "click reaction", has emerged as a powerful and versatile synthetic tool that finds a broad spectrum of applications in chemistry, biology and materials science. The efficiency, selectivity and versatility of the CuAAC reactions have enabled the preparation of vast arrays of triazole compounds with biological and pharmaceutical applications. In this feature article, we outline the applications and future prospects of click chemistry in the synthesis and development of small molecules that target G-quadruplex nucleic acids and show promising biological activities. Furthermore, this article highlights the template-assisted in situ click chemistry for developing G-quadruplex specific ligands and the use of click chemistry for enhancing drug specificity as well as designing imaging and sensor systems to elucidate the biological functions of G-quadruplex nucleic acids in live cells.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | |
Collapse
|
26
|
Tomczyk MD, Walczak KZ. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur J Med Chem 2018; 159:393-422. [PMID: 30312931 DOI: 10.1016/j.ejmech.2018.09.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
Abstract
In this review, we describe a detailed investigation about the structural variations and relative activity of 1,8-naphthalimide based intercalators and anticancer agents. The 1,8-naphthalimides binds to the DNA via intercalation, and exert their antitumor activities through Topoisomerase I/II inhibition, photoinduced DNA damage or related mechanism. Here, our discussion focused on works published over the last ten years (2007-2017) related to therapeutic applications, in the order of cancer treatment followed by other properties of 1,8-naphthalimides. In preparing for this review, we considered that several seminal reviews have appeared over the last fifteen years and focused on closely related subjects, however, none of them is exhaustive.
Collapse
Affiliation(s)
- Mateusz D Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Krzysztof Z Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
27
|
Jäger S, Gude L, Arias-Pérez MS. 4,5-Diazafluorene N-glycopyranosyl hydrazones as scaffolds for potential bioactive metallo-organic compounds: Synthesis, structural study and cytotoxic activity. Bioorg Chem 2018; 81:405-413. [PMID: 30205247 DOI: 10.1016/j.bioorg.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 02/05/2023]
Abstract
A series of novel N1-(4,5-diazafluoren-9-yliden)-N2-glycopyranosyl hydrazines was prepared in synthetically useful yields by treatment of 9H-4,5-diazafluoren-9-hydrazone with different unprotected monosaccharides. The reactions with the monosaccharides tested afforded stereoselectively, and exclusively, cyclic derivatives, whose structures correspond to N-β-glycopyranosyl hydrazones except for the d-arabinose derivative that agrees with the α-anomer. Several copper(II) complexes having a 2:1 ligand to metal mole ratio were also prepared. The metal complexes can bind DNA sequences and preferentially stabilize G-quadruplex DNA structures over dsDNA. The fucose, rhamnose and deoxyglucose copper(II) complexes exhibited a cytotoxic activity against cultured HeLa and PC3 tumor cells comparable to other metal complexes normally used for chemotherapeutic purposes, such as cisplatin.
Collapse
Affiliation(s)
- Sebastian Jäger
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - María-Selma Arias-Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
28
|
Kumar R, Ugale SN, Kale AM, Bhosale RS, Narayan R. Influence of Acetylation/Deacetylation on Aggregation-Induced Emission, Chirality and Self-Assembly Behavior of β
-d
-Glucopyranoside-Tethered Naphthalene Diimide Amphiphiles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajnish Kumar
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology (CSIR-IICT); Hyderabad 500007 India
- Academy of Scientific & Innovative Research (AcSIR); CSIR-HRDC Campus; Ghaziabad- 201002 India
| | - Sham N. Ugale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology (CSIR-IICT); Hyderabad 500007 India
| | - Amol M. Kale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology (CSIR-IICT); Hyderabad 500007 India
| | - Rajesh S. Bhosale
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology (CSIR-IICT); Hyderabad 500007 India
| | - Ramanuj Narayan
- Polymers and Functional Materials Division; CSIR-Indian Institute of Chemical Technology (CSIR-IICT); Hyderabad 500007 India
- Academy of Scientific & Innovative Research (AcSIR); CSIR-HRDC Campus; Ghaziabad- 201002 India
| |
Collapse
|
29
|
Marchetti C, Zyner KG, Ohnmacht SA, Robson M, Haider SM, Morton JP, Marsico G, Vo T, Laughlin-Toth S, Ahmed AA, Di Vita G, Pazitna I, Gunaratnam M, Besser RJ, Andrade ACG, Diocou S, Pike JA, Tannahill D, Pedley RB, Evans TRJ, Wilson WD, Balasubramanian S, Neidle S. Targeting Multiple Effector Pathways in Pancreatic Ductal Adenocarcinoma with a G-Quadruplex-Binding Small Molecule. J Med Chem 2018; 61:2500-2517. [PMID: 29356532 PMCID: PMC5867665 DOI: 10.1021/acs.jmedchem.7b01781] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[ lmn][3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers.
Collapse
Affiliation(s)
- Chiara Marchetti
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Katherine G. Zyner
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Stephan A. Ohnmacht
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mathew Robson
- Cancer
Research UK Cancer Centre, UCL Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Shozeb M. Haider
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Jennifer P. Morton
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Giovanni Marsico
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Tam Vo
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Sarah Laughlin-Toth
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ahmed A. Ahmed
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gloria Di Vita
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ingrida Pazitna
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mekala Gunaratnam
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Rachael J. Besser
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ana C. G. Andrade
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Seckou Diocou
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Jeremy A. Pike
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - David Tannahill
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - R. Barbara Pedley
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - T. R. Jeffry Evans
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - W. David Wilson
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Shankar Balasubramanian
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- The
School of Clinical Medicine, University
of Cambridge, Cambridge CB2 0SP, U.K.
| | - Stephen Neidle
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| |
Collapse
|
30
|
O'Hagan MP, Mergny JL, Waller ZAE. G-quadruplexes in Prague: A Bohemian Rhapsody. Biochimie 2018; 147:170-180. [PMID: 29452278 DOI: 10.1016/j.biochi.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022]
Abstract
The Sixth International Meeting on Quadruplex Nucleic Acids was held at the Hotel Internationale in Prague, Czech Republic from 31 May - 3 June 2017. A vibrant interdisciplinary community of over 300 scientists gathered to share their newest results in this exciting field and exchange ideas for further investigations.
Collapse
Affiliation(s)
- Michael Paul O'Hagan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS1 1TS, UK.
| | - Jean-Louis Mergny
- Univ. Bordeaux, ARNA Laboratory, Inserm U1212, CNRS UMR 5320, IECB, F-33600, France; Institute of Biophysics, AS CR, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Zoë Ann Ella Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
31
|
Street STG, Chin DN, Hollingworth GJ, Berry M, Morales JC, Galan MC. Divalent Naphthalene Diimide Ligands Display High Selectivity for the Human Telomeric G-quadruplex in K + Buffer. Chemistry 2017; 23:6953-6958. [PMID: 28257554 PMCID: PMC5485019 DOI: 10.1002/chem.201700140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 01/09/2023]
Abstract
Selective G‐quadruplex ligands offer great promise for the development of anti‐cancer therapies. A novel series of divalent cationic naphthalene diimide ligands that selectively bind to the hybrid form of the human telomeric G‐quadruplex in K+ buffer are described herein. We demonstrate that an imidazolium‐bearing mannoside‐conjugate is the most selective ligand to date for this quadruplex against several other quadruplex and duplex structures. We also show that a similarly selective methylpiperazine‐bearing ligand was more toxic to HeLa cancer cells than doxorubicin, whilst exhibiting three times less toxicity towards fetal lung fibroblasts WI‐38.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Donovan N Chin
- Novartis Institutes for Biomedical Research, 250 Massachusetts Ave., Cambridge, Massachusetts, 02139, USA
| | | | - Monica Berry
- School of Physics, University of Bristol, HH Wills Physics Laboratory, Bristol, BS8 1TL, UK
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|