1
|
Ototake M, Inagaki M, Kimura S, Onda K, Tada M, Kawaguchi D, Murase H, Fukuchi K, Gao Y, Kokubo K, Acharyya S, Meng Z, Ishida T, Kawasaki T, Abe N, Hashiya F, Kimura Y, Abe H. Development of hydrophobic tag purifying monophosphorylated RNA for chemical synthesis of capped mRNA and enzymatic synthesis of circular mRNA. Nucleic Acids Res 2024:gkae847. [PMID: 39414255 DOI: 10.1093/nar/gkae847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/16/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
We developed phosphorylation reagents with a nitrobenzyl hydrophobic tag and used them for 5'-phosphorylation of chemically or transcriptionally synthesized RNA. The capability of hydrophobic tags to synthesize 5'-monophosphorylated RNA was evaluated based on the yield of the desired oligonucleotides, stability of protecting groups during cleavage/deprotection, separation ability in reverse-phase HPLC (RP-HPLC), and deprotection efficiency after RP-HPLC purification. The results showed that a nitrobenzyl derivative with a tert-butyl group at the benzyl position was most suitable for RNA 5'-phosphorylation. Using the developed phosphorylation reagent, we chemically synthesized 5'-phosphorylated RNA and confirmed that it could be purified by RP-HPLC and the following deprotection. In addition, we demonstrated complete chemical synthesis of minimal mRNA by chemical capping of 5'-monophosphorylated RNA. Ribonucleoside 5'-monophosphates with hydrophobic protecting groups have also been developed and used as substrates to transcriptionally synthesize 5'-phosphorylated RNA with >1000 bases. From the mixture of the by-products and the desired RNA, only 5'-monophosphorylated RNA could be effectively isolated by RP-HPLC. Furthermore, monophosphorylated RNA can be converted into circular mRNA via RNA ligase-mediated cyclization. Circular mRNA expression of nanoluciferase in cultured cells and mice. These techniques are important for the production of chemically synthesized mRNA and circular mRNA.
Collapse
Affiliation(s)
- Mami Ototake
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Seigo Kimura
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kosuke Fukuchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yinuo Gao
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kengo Kokubo
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Susit Acharyya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zheyu Meng
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tatsuma Ishida
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tairin Kawasaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency. 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency. 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Bartosik K, Micura R. Access to capped RNAs by chemical ligation. RSC Chem Biol 2024:d4cb00165f. [PMID: 39279877 PMCID: PMC11393730 DOI: 10.1039/d4cb00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
A distinctive feature of eukaryotic mRNAs is the presence of a cap structure at the 5' end. The typical cap consists of 7-methylguanosine linked to the first transcribed nucleotide through a 5',5'-triphosphate bridge. It plays a key role in many processes in eukaryotic cells, including splicing, intracellular transport, initiation of translation and turnover. Synthetic capped oligonucleotides have served as useful tools for elucidating these physiological processes. In addition, cap mimics with artificial modifications are of interest for the design of mRNA-based therapeutics and vaccines. While the short cap mimics can be obtained by chemical synthesis, the preparation of capped analogs of mRNA length is still challenging and requires templated enzymatic ligation of synthetic RNA fragments. To increase the availability of capped mRNA analogs, we present here a practical and non-templated approach based on the use of click ligation resulting in RNAs bearing a single triazole linkage within the oligo-phosphate backbone. Capped RNA fragments with up to 81 nucleotides in length have thus been obtained in nanomolar yields and are in demand for biochemical, spectroscopic or structural studies.
Collapse
Affiliation(s)
- Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
3
|
Flemmich L, Bereiter R, Micura R. Chemical Synthesis of Modified RNA. Angew Chem Int Ed Engl 2024; 63:e202403063. [PMID: 38529723 DOI: 10.1002/anie.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Pichon M, Levi-Acobas F, Kitoun C, Hollenstein M. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry 2024; 30:e202400137. [PMID: 38403849 DOI: 10.1002/chem.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Camélia Kitoun
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
5
|
Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA Therapeutics: Current Landscape and Challenges in Manufacturing. Biomolecules 2023; 13:1497. [PMID: 37892179 PMCID: PMC10604719 DOI: 10.3390/biom13101497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostimulatory byproducts can pose a barrier for chronic treatments and different production scales may need to be considered for these applications. Moreover, long-term storage of mRNA products is notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA therapeutics, including sequence design, DNA template preparation, mRNA production and formulation, while identifying the challenges remaining in the dose requirements, long-term storage and immunotolerance of the product.
Collapse
Affiliation(s)
| | | | | | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (M.Y.); (C.H.); (J.P.C.F.)
| |
Collapse
|
6
|
Abe N, Imaeda A, Inagaki M, Li Z, Kawaguchi D, Onda K, Nakashima Y, Uchida S, Hashiya F, Kimura Y, Abe H. Complete Chemical Synthesis of Minimal Messenger RNA by Efficient Chemical Capping Reaction. ACS Chem Biol 2022; 17:1308-1314. [PMID: 35608277 DOI: 10.1021/acschembio.1c00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific chemical modification of mRNA can improve its translational efficiency and stability. For this purpose, it is desirable to develop a complete chemical synthesis method for chemically modified mRNA. The key is a chemical reaction that introduces a cap structure into the chemically synthesized RNA. In this study, we developed a fast and quantitative chemical capping reaction between 5'-phosphorylated RNA and N7-methylated GDP imidazolide in the presence of 1-methylimidazole in the organic solvent dimethyl sulfoxide. It enabled quantitative preparation of capping RNA within 3 h. We prepared chemically modified 107-nucleotide mRNAs, including N6-methyladenosine, insertion of non-nucleotide linkers, and 2'-O-methylated nucleotides at the 5' end and evaluated their effects on translational activity in cultured HeLa cells. The results showed that mRNAs with non-nucleotide linkers in the untranslated regions were sufficiently tolerant to translation and that mRNAs with the Cap_2 structure had higher translational activity than those with the Cap_0 structure.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Akihiro Imaeda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuko Nakashima
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Uchida
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
7
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Räuchle M, Leveau G, Richert C. Synthesis of Peptido RNAs from Unprotected Peptides and Oligoribonucleotides via Coupling in Aqueous Solution. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maximilian Räuchle
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Gabrielle Leveau
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Clemens Richert
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
9
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
10
|
Hagen T, Malinowska AL, Lightfoot HL, Bigatti M, Hall J. Site-Specific Fluorophore Labeling of Guanosines in RNA G-Quadruplexes. ACS OMEGA 2019; 4:8472-8479. [PMID: 31459936 PMCID: PMC6648711 DOI: 10.1021/acsomega.9b00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/24/2019] [Indexed: 05/08/2023]
Abstract
RNA G-quadruplexes are RNA secondary structures that are implicated in many cellular processes. Although conventional biophysical techniques are widely used for their in vitro characterization, more advanced methods are needed to study complex equilibria and the kinetics of their folding. We have developed a new Förster resonance energy-transfer-based method to detect the folding of RNA G-quadruplexes, which is enabled by labeling the 2'-positions of participating guanosines with fluorophores. Importantly, this does not interfere with the required anti conformation of the nucleobase in a quadruplex with parallel topology. Sequential click reactions on the solid phase and in solution using a stop-and-go strategy circumvented the issue of unselective cross-labeling. We exemplified the method on a series of sequences under different assay conditions. In contrast to the commonly used end-labeling approach, our internal labeling strategy would also allow the study of G-quadruplex formation in long functional RNAs.
Collapse
|
11
|
Madaoui M, Meyer A, Vasseur JJ, Morvan F. Thermolytic Reagents to Synthesize 5′- or 3′-Mono(thio)phosphate Oligodeoxynucleotides or 3′-modified oligodeoxynucleotides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mimouna Madaoui
- Institut des Biomolécules Max Mousseron (IBMM); Université de Montpellier; CNRS, ENSCM; Montpellier France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM); Université de Montpellier; CNRS, ENSCM; Montpellier France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM); Université de Montpellier; CNRS, ENSCM; Montpellier France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM); Université de Montpellier; CNRS, ENSCM; Montpellier France
| |
Collapse
|
12
|
Walder B, Berk C, Liao WC, Rossini AJ, Schwarzwälder M, Pradere U, Hall J, Lesage A, Copéret C, Emsley L. One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS CENTRAL SCIENCE 2019; 5:515-523. [PMID: 30937379 PMCID: PMC6439530 DOI: 10.1021/acscentsci.8b00916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Determining atomic-level characteristics of molecules on two-dimensional surfaces is one of the fundamental challenges in chemistry. High-resolution nuclear magnetic resonance (NMR) could deliver rich structural information, but its application to two-dimensional materials has been prevented by intrinsically low sensitivity. Here we obtain high-resolution one- and two-dimensional 31P NMR spectra from as little as 160 picomoles of oligonucleotide functionalities deposited onto silicate glass and sapphire wafers. This is enabled by a factor >105 improvement in sensitivity compared to typical NMR approaches from combining dynamic nuclear polarization methods, multiple-echo acquisition, and optimized sample formulation. We demonstrate that, with this ultrahigh NMR sensitivity, 31P NMR can be used to observe DNA bound to miRNA, to sense conformational changes due to ion binding, and to follow photochemical degradation reactions.
Collapse
Affiliation(s)
- Brennan
J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Berk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Martin Schwarzwälder
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Ugo Pradere
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Jonathan Hall
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Anne Lesage
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS
Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| |
Collapse
|
13
|
Pradère U, Halloy F, Hall J. Chemical synthesis of long RNAs with terminal 5'-phosphate groups. Chemistry 2017; 23:5210-5213. [PMID: 28295757 PMCID: PMC5413853 DOI: 10.1002/chem.201700514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 01/20/2023]
Abstract
Long structured RNAs are useful biochemical and biological tools. They are usually prepared enzymatically, but this precludes their site-specific modification with functional groups for chemical biology studies. One solution is to perform solid-phase synthesis of multiple RNAs loaded with 5'-terminal phosphate groups, so that RNAs can be concatenated using template ligation reactions. However, there are currently no readily available reagents suitable for the incorporation of the phosphate group into long RNAs by solid-phase synthesis. Here we describe an easy-to-prepare phosphoramidite reagent suitable for the chemical introduction of 5'-terminal phosphate groups into long RNAs. The phosphate is protected by a dinitrobenzhydryl group that serves as an essential lipophilic group for the separation of oligonucleotide by-products. The phosphate is unmasked quantitatively by brief UV irradiation. We demonstrate the value of this reagent in the preparation of a library of long structured RNAs that are site-specifically modified with functional groups.
Collapse
Affiliation(s)
- Ugo Pradère
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - François Halloy
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| | - Jonathan Hall
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH Zürich8093ZürichSwitzerland
| |
Collapse
|