1
|
Li GW, Wang XJ, Shi SH, Liu LT, Li JQ, Sun H, Wu ZQ, Lei X. Polyarylisocyanides Derived from an Alkyne-Pd(II) Catalyst as Robust Alignment Media with Excellent Enantiodiscimination. Anal Chem 2023; 95:18850-18858. [PMID: 38091507 DOI: 10.1021/acs.analchem.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The development of chiral alignment media for measuring anisotropic NMR parameters provides an opportunity to determine the absolute configuration of chiral molecules without the need for derivatization. However, chiral alignment media with a high and robust enantiodiscriminating property for a wide range of chiral molecules are still scarce. In this study, we synthesized cholesterol-end-functionalized helical polyisocyanides from a chiral monomer using a cholesterol-based alkyne-Pd(II) initiator. These stereoregular polyisocyanides form stable and weak anisotropic lyotropic liquid crystals (LLCs) in dichloromethane systems, exhibiting highly optical activities in both single left- and right-handed helices. The preparation process of the media was straightforward, and the aligning property of the LLCs could be controlled by adjusting the concentration and temperature. Using the chiral polyisocyanides, we extracted the residual dipolar coupling for an enantiomeric pair of isopinocampheol (IPC), as well as a number of pharmaceutical molecules, demonstrating excellent enantiodiscriminating properties for a broad range of chiral compounds.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinxiang Lei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemi-cal Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
2
|
Zhao Y, Qin H, Yang YL, Li JQ, Qin SY, Zhang AQ, Lei X. Weakly aligned Ti 3C 2T x MXene liquid crystals: measuring residual dipolar coupling in multiple co-solvent systems. NANOSCALE 2023; 15:7820-7828. [PMID: 37051680 DOI: 10.1039/d3nr00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.
Collapse
Affiliation(s)
- You Zhao
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Huan Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Si-Yong Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Ai-Qing Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
3
|
Immel S, Köck M, Reggelin M. NMR-Based Configurational Assignments of Natural Products: How Floating Chirality Distance Geometry Calculations Simplify Gambling with 2 N-1 Diastereomers. JOURNAL OF NATURAL PRODUCTS 2022; 85:1837-1849. [PMID: 35820115 DOI: 10.1021/acs.jnatprod.2c00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using NMR data, the assignment of the correct 3D configuration and conformation to unknown natural products is of pivotal importance in pharmaceutical and medicinal chemistry. In this report, we quantify the probability of configurational assignments to judge the quality of structural elucidations using Bayesian inference in combination with floating-chirality distance geometry simulations. Based on reference-free NOE/ROE data, residual dipolar couplings (RDCs), and residual quadrupolar couplings (RQCs) in various combinations, we demonstrate how the relative configurations of three natural compounds, namely, jatrohemiketal (1), artemisinin (2), and Taxol (3), can be unambiguously established without the necessity to carry out time-consuming DFT-based configurational and conformational analyses. Our results quantitatively describe how reliably molecular geometries can be inferred from experimental NMR data, thereby unequivocally unveiling remaining assignment ambiguities. The methodology presented here will dramatically reduce the risk of incorrect structural assignments based on the overinterpretation of incomplete data and DFT-based structure models in chemistry.
Collapse
Affiliation(s)
- Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Matthias Köck
- Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Lin Y, Li J, Qin SY, Sun H, Yang YL, Navarro-Vázquez A, Lei X. Programmable alignment media from self-assembled oligopeptide amphiphiles for the measurement of independent sets of residual dipolar couplings in organic solvents. Chem Sci 2022; 13:5838-5845. [PMID: 35685790 PMCID: PMC9131869 DOI: 10.1039/d2sc01057g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
NMR spectroscopy in anisotropic media has emerged as a powerful technique for the structural elucidation of organic molecules. Its application requires weak alignment of analytes by means of suitable alignment media. Although a number of alignment media, that are compatible with organic solvents, have been introduced in the last 20 years, acquiring a number of independent, non-linearly related sets of anisotropic NMR data from the same organic solvent system remains a formidable challenge, which is however crucial for the alignment simulations and deriving dynamic and structural information of organic molecules unambiguously. Herein, we introduce a programmable strategy to construct several distinct peptide-based alignment media by adjusting the amino acid sequence, which allows us to measure independent sets of residual dipolar couplings (RDCs) in a highly efficient and accurate manner. This study opens a new avenue for de novo structure determination of organic compounds without requiring prior structural information. We report a programmable strategy to construct multi-alignment media via peptide self-assembly for the measurement of independent sets of residual dipolar couplings (RDCs).![]()
Collapse
Affiliation(s)
- Yuexiao Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Jiaqian Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Si-Yong Qin
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Group of Structural Chemistry and Computational Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP 50740-540 Recife PE Brazil
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China .,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
5
|
Wang XJ, Li GW, Cheng YP, Sun QL, Hao YQ, Wang CH, Liu LT. Design and Synthesis of Dipeptidomimetic Isocyanonaphthalene as Enhanced-Fluorescent Chemodosimeter for Sensing Mercury Ion and Living Cells. Front Chem 2022; 10:813108. [PMID: 35317003 PMCID: PMC8934403 DOI: 10.3389/fchem.2022.813108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
A novel valine-based isocyanonaphthalene (NpI) was designed and synthesized by using an easy method and enabled the selective fluorescence detection of Hg2+. The chemodosimeter can display an immediate turn-on fluorescence response (500-fold) towards target metal ions upon the Hg2+-mediated conversion of isocyano to amino within NpI. Based on this specific reaction, the fluorescence-enhancement probe revealed a high sensitivity toward Hg2+ over other common metal ions and exhibited excellent aqueous solubility, good antijamming capability, high sensitivity (detection limit: 14.2 nM), and real-time detection. The response mechanism of NpI was supported by NMR spectroscopy, MS analysis and DFT theoretical calculation using various techniques. Moreover, a dipeptidomimetic NpI probe was successfully applied to visualize intracellular Hg2+ in living cells and monitor Hg2+ in real water samples with good recoveries and small relative standard deviations.
Collapse
Affiliation(s)
| | - Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, and Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, China
| | | | | | - Yuan-Qiang Hao
- College of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, and Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, China
| | | | | |
Collapse
|
6
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
7
|
Wesp S, Wolf K, Immel S, Reggelin M. Poly(arylisocyanides) as Versatile, Enantiodiscriminating Alignment Media for Small Molecules. Chempluschem 2022; 87:e202100507. [PMID: 35072980 DOI: 10.1002/cplu.202100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/02/2022] [Indexed: 11/08/2022]
Abstract
Lyotropic liquid crystalline (LLC) phases of amino acid derived polyarylisocyanides were employed as chiral alignment media for the measurement of residual dipolar couplings (RDCs) of small chiral organic molecules. Anisotropic samples in CDCl3 displayed quadrupolar splittings of the deuterium signal in the range of several hundreds of Hertz. The LLC phases showed excellent orienting properties for a broad range of analytes bearing various functional groups. The precise extraction of RDCs in the range of up to ±40 Hertz from F2-coupled HSQC spectra was possible. Additionally, the chiral environment offers the opportunity for diastereomorphous interactions with the enantiomers of chiral analytes leading to two different sets of RDCs. This differential order effect was particularly pronounced with ketones and alcohols.
Collapse
Affiliation(s)
- Svenja Wesp
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Kai Wolf
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Stefan Immel
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| |
Collapse
|
8
|
Aroulanda C, Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2021; 34:182-244. [PMID: 34936130 DOI: 10.1002/chir.23386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.
Collapse
Affiliation(s)
- Christie Aroulanda
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| | - Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
9
|
Immel S, Köck M, Reggelin M. NMR-Based Configurational Assignments of Natural Products: Gibbs Sampling and Bayesian Inference Using Floating Chirality Distance Geometry Calculations. Mar Drugs 2021; 20:14. [PMID: 35049868 PMCID: PMC8781118 DOI: 10.3390/md20010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Floating chirality restrained distance geometry (fc-rDG) calculations are used to directly evolve structures from NMR data such as NOE-derived intramolecular distances or anisotropic residual dipolar couplings (RDCs). In contrast to evaluating pre-calculated structures against NMR restraints, multiple configurations (diastereomers) and conformations are generated automatically within the experimental limits. In this report, we show that the "unphysical" rDG pseudo energies defined from NMR violations bear statistical significance, which allows assigning probabilities to configurational assignments made that are fully compatible with the method of Bayesian inference. These "diastereomeric differentiabilities" then even become almost independent of the actual values of the force constants used to model the restraints originating from NOE or RDC data.
Collapse
Affiliation(s)
- Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Matthias Köck
- Alfred-Wegener-Institut für Polar-und Meeresforschung in der Helmholtz-Gemeinschaft, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
11
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
12
|
Krupp A, Noll M, Reggelin M. Valine derived poly (acetylenes) as versatile chiral lyotropic liquid crystalline alignment media for RDC-based structure elucidations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:577-586. [PMID: 32012341 DOI: 10.1002/mrc.5003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Anisotropic samples of lyotropic liquid crystalline (LLC) phases of valine derived polyaryl acetylenes were employed as chiral alignment media for the measurement of residual dipolar couplings (RDCs) of 12 small, chiral, organic molecules. The quadrupolar splitting of the deuterium signal of CDCl3 can be adjusted by temperature and concentration changes from 0 to 350 Hz. The LLC phases showed excellent orienting properties for all analytes bearing various functional groups. The precise extraction of RDCs in the range of up to ±30 Hz from F2-coupled HSQC spectra was possible. Additionally, the chiral environment led to diastereomorphous interactions with the enantiomers of chiral analytes leading to two different sets of RDCs. This differential order effect was particularly pronounced with H-bond donors like alcohols and 2° amines.
Collapse
Affiliation(s)
- Alexis Krupp
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Nitrochemie Aschau GmbH, Aschau am Inn, Germany
| | - Markus Noll
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Michael Reggelin
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Ibáñez de Opakua A, Zweckstetter M. Extending the applicability of P3D for structure determination of small molecules. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:105-116. [PMID: 37904779 PMCID: PMC10539764 DOI: 10.5194/mr-2-105-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 11/01/2023]
Abstract
The application of anisotropic nuclear magnetic resonance (NMR) parameters for the correct structural assignment of small molecules requires the use of partially ordered media. Previously we demonstrated that the use of P3D simulations using poly(γ -benzyl-L-glutamate) (PBLG) as an alignment medium allows for the determination of the correct diastereomer from extremely sparse NMR data. Through the analysis of the structural characteristics of small molecules in different alignment media, here we show that when steric or electrostatic factors dominate the alignment, P3D-PBLG retains its diastereomer discrimination power. We also demonstrate that P3D simulations can define the different conformations of a flexible small molecule from sparse NMR data.
Collapse
Affiliation(s)
- Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
14
|
da Silva DGB, Hallwass F, Navarro-Vázquez A. Single experiment measurement of residual dipolar couplings in aqueous solution using a biphasic bisperylene imide chromonic liquid crystal. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:408-413. [PMID: 33295034 DOI: 10.1002/mrc.5120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The use of the biphasic isotropic/nematic region in a bisperylene imide-based lyotropic liquid crystal system allows the extraction of proton-carbon 1 DCH residual dipolar couplings in aqueous solution from a single F1-coupled HSQC experiment. The method was successfully applied to the RDC-based conformational analysis of sucrose.
Collapse
Affiliation(s)
- Danilo G B da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
15
|
Alcaraz Janßen M, Thiele CM. Poly-γ-S-perillyl-l-glutamate and Poly-γ-S-perillyl-d-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chemistry 2020; 26:7831-7839. [PMID: 32134524 PMCID: PMC7384199 DOI: 10.1002/chem.201905447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Residual dipolar couplings (RDCs) offer additional information for structure elucidation by NMR spectroscopy. They are measured in anisotropic media, such as lyotropic liquid crystalline phases of polypeptides. Today, some suitable polypeptides are known. Nevertheless, structural influences of these polypeptides on the alignment properties are not really understood. Thus, which influence a chiral side chain has on enantiodiscrimination and whether we can improve the enantiodifferentiation significantly by adding an additional chiral center in the side chain are questions of interest. Therefore, new diastereomeric polypeptide-based alignment media with an additional chiral center in the side chain derived from perillyl alcohol were synthesized and their properties were investigated (secondary structure, liquid crystallinity, etc.). The enantiomers of isopinocampheol and β-pinene were used as model analytes for the study of enantiodiscrimination. Additionally, the usage of 1 H-1 H-RDCs to improve the alignment tensor quality is demonstrated.
Collapse
Affiliation(s)
- Marcel Alcaraz Janßen
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnical University of DarmstadtAlarich-Weiss-Str. 1664287DarmstadtGermany
| |
Collapse
|
16
|
Liu H, Chen P, Li XL, Sun H, Lei X. Practical aspects of oligopeptide AAKLVFF as an alignment medium for the measurements of residual dipolar coupling of organic molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:404-410. [PMID: 32239576 DOI: 10.1002/mrc.4825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 06/11/2023]
Abstract
Practical aspects of the oligopeptide AAKLVFF as an alignment medium are discussed, including large-scale synthesis of the oligopeptide, detailed description of preparation of the alignment medium, and acquisition of the RDCs. The resulting orienting medium is stable and highly homogeneous with tunable alignment strength in methanol.
Collapse
Affiliation(s)
- Han Liu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Pian Chen
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Xiao-Lu Li
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Han Sun
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| |
Collapse
|
17
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
18
|
Lesot P, Berdagué P, Meddour A, Kreiter A, Noll M, Reggelin M. 2 H and 13 C NMR-Based Enantiodetection Using Polyacetylene versus Polypeptide Aligning Media: Versatile and Complementary Tools for Chemists. Chempluschem 2019; 84:144-153. [PMID: 31950698 DOI: 10.1002/cplu.201800493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/12/2022]
Abstract
In this work, the practical/analytical potential of an L-valine-derived polyacetylene (PLA) lyotropic liquid crystal (LLC) is examined to spectrally discriminate enantiomers (racemic mixture) or enantiotopic directions of a large collection (23) of (pro)chiral model compounds (from rigid to flexible and polar to apolar ones), thus covering various important aspects of enantiomorphism. Experimental 2 H-{1 H} (deuterated analytes and at natural abundance level) and 13 C-{1 H} NMR results are discussed in terms of the difference of 2 H-RQCs or 13 C-RCSAs and compared to those obtained in polypeptide-type LLCs (PBLG). The analysis of the NMR results provides an overview of the enantiodifferentiation capabilities of PLA and gives useful/practical hints for the chemist to select the most appropriate chiral oriented system. Astonishing NAD NMR results were obtained in the case of one of the simplest, chiral alkanes, 3-methylhexane. From a theoretical viewpoint, the data collected highlight the key molecular factors involved in orientation/discrimination processes, as a basis for optimizing computational prediction (molecular dynamics simulation), as well as designing novel helically chiral polymers as new enantiodiscriminating aligning media. In addition, a new, robust and efficient protocol to synthesize PLA and its enantiomer (PDA) on a large scale and with small polydispersities is proposed.
Collapse
Affiliation(s)
- Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Sud/Université Paris-Saclay, Bât. 410, 91405, Orsay cedex, France
| | - Philippe Berdagué
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Sud/Université Paris-Saclay, Bât. 410, 91405, Orsay cedex, France
| | - Abdelkrim Meddour
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Sud/Université Paris-Saclay, Bât. 410, 91405, Orsay cedex, France
| | - Alexander Kreiter
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Markus Noll
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| |
Collapse
|
19
|
Jeziorowski S, Thiele CM. Poly‐γ‐
p
‐Biphenylmethyl‐Glutamate as Enantiodifferentiating Alignment Medium for NMR Spectroscopy with Temperature‐Tunable Properties. Chemistry 2018; 24:15631-15637. [DOI: 10.1002/chem.201802921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Sharon Jeziorowski
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
20
|
Li GW, Liu H, Qiu F, Wang XJ, Lei XX. Residual Dipolar Couplings in Structure Determination of Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:279-295. [PMID: 29943349 PMCID: PMC6102172 DOI: 10.1007/s13659-018-0174-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/16/2023]
Abstract
The determination of natural products stereochemistry remains a formidable task. Residual dipolar couplings (RDCs) induced by anisotropic media are a powerful tool for determination of the stereochemistry of organic molecule in solution. This review will provide a short introduction on RDCs-based methodology for the structural elucidation of natural products. Special attention is given to the current availability of alignment media in organic solvents. The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized. This review provides a short introduction on RDCs-based methodology for the structural elucidation of natural products. Special attention is given to the current availability of alignment media in organic solvents. The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Han Liu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Xin-Xiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
21
|
Schwab M, Herold D, Thiele CM. Polyaspartates as Thermoresponsive Enantiodifferentiating Helically Chiral Alignment Media for Anisotropic NMR Spectroscopy. Chemistry 2017; 23:14576-14584. [DOI: 10.1002/chem.201702884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mira Schwab
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
22
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017; 56:12857-12861. [PMID: 28834640 DOI: 10.1002/anie.201705123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Indexed: 11/10/2022]
Abstract
Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.
Collapse
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
23
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wensheng Xiang
- School of Life Science; Northeast Agricultural University; Harbin Heilongjiang Province 150030 China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| |
Collapse
|