1
|
Azad T, Torres HF, Auad ML, Elder T, Adamczyk AJ. Isolating key reaction energetics and thermodynamic properties during hardwood model lignin pyrolysis. Phys Chem Chem Phys 2021; 23:20919-20935. [PMID: 34541592 DOI: 10.1039/d1cp02917g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational studies on the pyrolysis of lignin using electronic structure methods have been largely limited to dimeric or trimeric models. In the current work we have modeled a lignin oligomer consisting of 10 syringyl units linked through 9 β-O-4' bonds. A lignin model of this size is potentially more representative of the polymer in angiosperms; therefore, we used this representative model to examine the behavior of hardwood lignin during the initial steps of pyrolysis. Using this oligomer, the present work aims to determine if and how the reaction enthalpies of bond cleavage vary with positions within the chain. To accomplish this, we utilized a composite method using molecular mechanics based conformational sampling and quantum mechanically based density functional theory (DFT) calculations. Our key results show marked differences in bond dissociation enthalpies (BDE) with the position. In addition, we calculated standard thermodynamic properties, including enthalpy of formation, heat capacity, entropy, and Gibbs free energy for a wide range of temperatures from 25 K to 1000 K. The prediction of these thermodynamic properties and the reaction enthalpies will benefit further computational studies and cross-validation with pyrolysis experiments. Overall, the results demonstrate the utility of a better understanding of lignin pyrolysis for its effective valorization.
Collapse
Affiliation(s)
- Tanzina Azad
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| | - Hazl F Torres
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| | - Maria L Auad
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA. .,Center for Polymer and Advanced Composites, Auburn, AL, USA
| | - Thomas Elder
- United States Department of Agriculture (USDA) Forest Service, Southern Research Station, Auburn, AL, USA
| | - Andrew J Adamczyk
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
2
|
Wu X, Zhou X, Bjelić S, Hemberger P, Bodi A. Valence Photoionization and Energetics of Vanillin, a Sustainable Feedstock Candidate. J Phys Chem A 2021; 125:3327-3340. [PMID: 33872037 DOI: 10.1021/acs.jpca.1c00876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the valence photoionization of vanillin by photoelectron photoion coincidence spectroscopy in the 8.20-19.80 eV photon energy range. Vertical ionization energies by EOM-IP-CCSD calculations reproduce the photoelectron spectral features. Composite method calculations and Franck-Condon simulation of the weak, ground-state band yield the adiabatic ionization energy of the most stable vanillin conformer as 8.306(20) eV. The lowest energy dissociative photoionization channels correspond to hydrogen atom, carbon monoxide, and methyl losses, which form the dominant C8H7O3+ (m/z 151) and the less intense C7H8O2+ (m/z 124) and C7H5O3+ (m/z 137) fragment ions in parallel dissociation channels at modeled 0 K appearance energies of 10.13(1), 10.40(3), and 10.58(10) eV, respectively. On the basis of the breakdown diagram, we explore the energetics of sequential methyl and carbon monoxide loss channels, which dominate the fragmentation mechanism at higher photon energies. The 0 K appearance energy for sequential CO loss from the m/z 151 fragment to C7H7O2+ (m/z 123) is 12.99(10) eV, and for sequential CH3 loss from the m/z 123 fragment to C6H4O2+ (m/z 108), it is 15.40(20) eV based on the model. Finally, we review the thermochemistry of the bi- and trifunctionalized benzene derivatives guaiacol, hydroxybenzaldehyde, anisaldehyde, and vanillin. On the basis of isodesmic functional group exchange reactions, we propose new enthalpies of formations, among them ΔfH°298K(vanillin, g) = -383.5 ± 2.9 kJ mol-1. These mechanistic insights and ab initio thermochemistry results will support analytical works to study lignin conversion involving vanillin.
Collapse
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland.,Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Saša Bjelić
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Andras Bodi
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
3
|
Pan Z, Puente-Urbina A, Bodi A, van Bokhoven JA, Hemberger P. Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chem Sci 2021; 12:3161-3169. [PMID: 34164083 PMCID: PMC8179379 DOI: 10.1039/d1sc00654a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
The catalytic pyrolysis mechanism of the initial lignin depolymerization products will help us develop biomass valorization strategies. How does isomerism influence reactivity, product formation, selectivities, and side reactions? By using imaging photoelectron photoion coincidence (iPEPICO) spectroscopy with synchrotron radiation, we reveal initial, short-lived reactive intermediates driving benzenediol catalytic pyrolysis over H-ZSM-5 catalyst. The detailed reaction mechanism unveils new pathways leading to the most important products and intermediates. Thanks to the two vicinal hydroxyl groups, catechol (o-benzenediol) is readily dehydrated to form fulvenone, a reactive ketene intermediate, and exhibits the highest reactivity. Fulvenone is hydrogenated on the catalyst surface to phenol or is decarbonylated to produce cyclopentadiene. Hydroquinone (p-benzenediol) mostly dehydrogenates to produce p-benzoquinone. Resorcinol, m-benzenediol, is the most stable isomer, because dehydration and dehydrogenation both involve biradicals owing to the meta position of the hydroxyl groups and are unfavorable. The three isomers may also interconvert in a minor reaction channel, which yields small amounts of cyclopentadiene and phenol via dehydroxylation and decarbonylation. We propose a generalized reaction mechanism for benzenediols in lignin catalytic pyrolysis and provide detailed mechanistic insights on how isomerism influences conversion and product formation. The mechanism accounts for processes ranging from decomposition reactions to molecular growth by initial polycyclic aromatic hydrocarbon (PAH) formation steps to yield, e.g., naphthalene. The latter involves a Diels-Alder dimerization of cyclopentadiene, isomerization, and dehydrogenation.
Collapse
Affiliation(s)
- Zeyou Pan
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| |
Collapse
|
4
|
Hemberger P, van Bokhoven JA, Pérez-Ramírez J, Bodi A. New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02587a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How can we detect reactive and elusive intermediates in catalysis to unveil reaction mechanisms? In this mini review, we discuss novel photoionization tools to support this quest.
Collapse
Affiliation(s)
- Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
- Institute for Chemical and Bioengineering
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
| |
Collapse
|
5
|
Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics. Catalysts 2019. [DOI: 10.3390/catal9110935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin.
Collapse
|
6
|
Price JT, Gao W, Fatehi P. Lignin-g-poly(acrylamide)-g-poly(diallyldimethyl- ammonium chloride): Synthesis, Characterization and Applications. ChemistryOpen 2018; 7:645-658. [PMID: 30155399 PMCID: PMC6110050 DOI: 10.1002/open.201800105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 11/11/2022] Open
Abstract
The search for a renewable substitute to petroleum-based products has fueled increasing research on lignin, an under-utilized product from pulping processes. In this work, lignin was copolymerized with acrylamide (AM) and diallyldimethylammonium chloride (DADMAC) under acidic conditions with Na2S2O8 as an initiator, generating a cationic water-soluble lignin-g-P(AM)-g-P(DADMAC) copolymer. The optimal reaction conditions, using a 5×4 factorial design experiment, were determined to be an AM/DADMAC/lignin molar ratio of 5.5:2.4:1, 90 °C, 0.26 mol L-1 of lignin, and pH 2. Under the optimal reaction conditions, the resulting lignin-g-P(AM)-g-P(DADMAC) copolymer was 83 % soluble in an aqueous solution (at 10 g L-1) and at neutral pH. The copolymer had a charge density of 1.27 meq g-1, molecular weight of (1.33±0.08) ×106, an AM grafting ratio of 112 wt %, and a DADMAC grafting ratio of 20 wt %. In addition, the activation energy for producing this copolymer as well as the thermal and rheological properties of the copolymer were determined. The flocculation performance of lignin-g-P(AM)-g-P(DADMAC) copolymer was evaluated in a kaolin suspension, which showed that the lignin copolymer had a comparable flocculation efficiency with the synthetic analogue of P(AM)-g-P(DADMAC) at pH 6.
Collapse
Affiliation(s)
- Jacquelyn Tara Price
- Chemical Engineering DepartmentLakehead University955 Oliver RoadThunder BayP7B7C3ONCanada), Fax: (01) 807-346-7943
- Bio-Economy Technology Centre2001 Neebing AvenueThunder BayP7E 6S3ONCanada
| | - Weijue Gao
- Chemical Engineering DepartmentLakehead University955 Oliver RoadThunder BayP7B7C3ONCanada), Fax: (01) 807-346-7943
| | - Pedram Fatehi
- Chemical Engineering DepartmentLakehead University955 Oliver RoadThunder BayP7B7C3ONCanada), Fax: (01) 807-346-7943
| |
Collapse
|