1
|
De Vita S, Meninno S, Capasso L, Colarusso E, Chini MG, Lauro G, Rinaldi R, De Cicco A, Sian V, Terracciano S, Nebbioso A, Lattanzi A, Bifulco G. 2-Substituted 1,5-benzothiazepine-based HDAC inhibitors exert anticancer activities on human solid and acute myeloid leukemia cell lines. Bioorg Med Chem 2023; 93:117444. [PMID: 37611334 DOI: 10.1016/j.bmc.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Sara Meninno
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Romolo Rinaldi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Annalisa De Cicco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessandra Lattanzi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|
2
|
Ogunnupebi TA, Ajani OO, Oduselu GO, Elebiju OF, Adebiyi E. Chemistry and Pharmacological diversity of Benzothiazepine - Excellent pathway to drug discovery. J Mol Struct 2023; 1280:135071. [PMID: 36843650 PMCID: PMC9957176 DOI: 10.1016/j.molstruc.2023.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this era of sporadic advancement in science and technology, a substantial amount of intervention is being set in motion to reduce health-related diseases. Discoveries from researchers have pinpointed the usefulness of heterocyclic compounds, amongst which benzothiazepine (BTZ) derivatives have been synthesized for their various pharmacological activities. This also contributes to their undeniable application in therapeutic medicine for the development of efficacious drugs. BTZs are compounds with a benzene ring fused with a thiazepine ring. This work contains several methods that have been used to synthesize 1,3-, 1,4-, 1,5-, and 4-1-benzothiazepine derivatives. In addition, up-to-date information about the crucial pharmacological activities of BTZ derivatives has been reviewed in this present study to appreciate their druggable potential in therapeutic medicine for drug development. Drug design and development have further been simplified with the implementation of computer aided approaches to predict biological interactions which can help in the design of several derivatives. Hence, the structural activity relationship (SAR), ADMET and the molecular docking studies of BTZ derivatives were discussed to further establish their interactions and safety in biological systems. This present work aims to expound on the reported chemistry and pharmacological propensity of BTZ moiety in relation to other relevant moieties to validate their potential as excellent pharmacophores in drug design and development.
Collapse
Affiliation(s)
- Temitope A. Ogunnupebi
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Oluwadunni F. Elebiju
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bio-informatics Research Cluster (CUBRe), Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Department of Computer and Information Science, Covenant University, P.M.B. 1023, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Ronse U, Magdalenić K, Van Camp J, D'hooghe M. Synthesis of the 1,5-Benzothiazepane Scaffold - Established Methods and New Developments. ChemistryOpen 2023; 12:e202200262. [PMID: 36807726 PMCID: PMC9942483 DOI: 10.1002/open.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Indexed: 02/23/2023] Open
Abstract
The 1,5-benzothiazepane structure is an important heterocyclic moiety present in a variety of commercial drugs and pharmaceuticals. This privileged scaffold exhibits a diversity of biological activities, including antimicrobial, antibacterial, anti-epileptic, anti-HIV, antidepressant, antithrombotic and anticancer properties. Its important pharmacological potential renders research into the development of new and efficient synthetic methods of high relevance. In the first part of this review, an overview of different synthetic approaches toward 1,5-benzothiazepane and its derivatives is provided, ranging from established protocols to recent (enantioselective) methods that promote sustainability. In the second part, several structural characteristics influencing biological activity are briefly explored, providing a few insights into the structure-activity relationships of these compounds.
Collapse
Affiliation(s)
- Ulrike Ronse
- SynBioC Research GroupDepartment of Green Chemistry and TechnologyFaculty of Bioscience EngineeringGhent UniversityCoupure Links 653Ghent9000Belgium
| | - Katarina Magdalenić
- SynBioC Research GroupDepartment of Green Chemistry and TechnologyFaculty of Bioscience EngineeringGhent UniversityCoupure Links 653Ghent9000Belgium
| | - John Van Camp
- Department of Food Technology, Safety and HealthGhent UniversityCoupure Links 653Ghent9000Belgium
| | - Matthias D'hooghe
- SynBioC Research GroupDepartment of Green Chemistry and TechnologyFaculty of Bioscience EngineeringGhent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
5
|
Niu C, Du DM. Recent Advances in Organocatalyzed Asymmetric sulfa-Michael Addition Triggered Cascade Reactions. CHEM REC 2023:e202200258. [PMID: 36594608 DOI: 10.1002/tcr.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The sulfa-Michael addition reaction is a crucial subset of the Michael addition reaction, and aroused the interest of numerous synthetic biologists and chemists. In particular, sulfa-Michael addition triggered cascade reaction has developed quickly in recent years because it offers an efficient method to construct C-S bonds and other bonds in one approach, which is widely applicable for building chiral pharmaceuticals, their intermediates, and natural compounds. This review emphasizes the recent advancements in sulfa-Michael addition-triggered cascade reactions for the stereoselective synthesis of sulfur-containing compounds, including sulfa-Michael/aldol, sulfa-Michael/Henry, sulfa-Michael/Michael, sulfa-Michael/Mannich and some sulfa-Michael triggered multi-step processes. Moreover, some reaction mechanisms and derivatization experiments are introduced appropriately.
Collapse
Affiliation(s)
- Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|
6
|
Zhu SJ, Hao ZF, Pan Y, Zhou Y, Liu XL, Zhang M, Lei CW. Asymmetric Formal (3 + 2) Cyclocondensation of Coumarin-3-Formylpyrazoles as 3-Carbon Partners with 3-Hydroxyoxindoles via Esterification/Michael Addition Sequence. J Org Chem 2022; 87:15210-15223. [PMID: 36305826 DOI: 10.1021/acs.joc.2c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first enantioselective formal (3 + 2) cyclocondensation involving α,β-unsaturated pyrazoleamides as 3-carbon partners was accomplished in a stepwise fashion. The stepwise esterification/Michael addition sequence is promoted by Zn(OTf)2 and quinine-squaramide derivative, respectively. The protocol enables access to spiro-fused pentacyclic spirooxindoles from coumarin-3-formylpyrazoles and 3-hydroxyoxindoles in good to satisfactory overall yields (up to 91%) with excellent dr (all cases >20:1 dr) and high ee values (up to 99%). Mechanistic investigations contributed to shedding light on the enantioselective event of the process.
Collapse
Affiliation(s)
- Shi-Jie Zhu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Zhi-Feng Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Ya Pan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Xiong-Li Liu
- National and Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang 550025, P. R. China
| | - Ming Zhang
- National and Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University, Guiyang 550025, P. R. China
| | - Chuan-Wen Lei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| |
Collapse
|
7
|
Hansen ME, Yasmin SO, Wolfrum S, Carreira EM. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew Chem Int Ed Engl 2022; 61:e202203051. [PMID: 35593892 PMCID: PMC9400992 DOI: 10.1002/anie.202203051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/30/2022]
Abstract
We report the first total syntheses of tricyclic mutanobactins A and B, lipopeptides incorporating a thiazepanone, isolated from Streptococcus mutans, a member of the human oral microbiome. A rapid, solid‐phase peptide synthesis (SPPS) based route delivers these natural products from a cascade of cyclization reactions. This versatile process was also employed in a streamlined synthesis of mutanobactin D. Additionally, we provide an independent synthesis of a truncated mutanobactin A analog, utilizing a novel thiazepanone amino acid building block.
Collapse
Affiliation(s)
- Moritz E. Hansen
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Samuel O. Yasmin
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
8
|
Hansen ME, Yasmin SO, Wolfrum S, Carreira EM. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz E. Hansen
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Samuel O. Yasmin
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
9
|
Momo PB, Mizobuchi EF, Echemendía R, Baddeley I, Grayson MN, Burtoloso ACB. Organocatalytic Enantioselective Sulfa-Michael Additions to α,β-Unsaturated Diazoketones. J Org Chem 2022; 87:3482-3490. [PMID: 35179890 DOI: 10.1021/acs.joc.1c03045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective sulfa-Michael additions to α,β unsaturated diazocarbonyl compounds have been developed. Quinine-derived squaramide was found to be the best catalyst to promote C-S bond formation in a highly stereoselective fashion for alkyl and aryl thiols. The easy-to-follow protocol allowed the preparation of 22 examples in enantiomeric ratios up to 97:3 and reaction yields up to 94%. The mechanism and origins of enantioselectivity were determined through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Patricia B Momo
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Eduardo F Mizobuchi
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Isabel Baddeley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew N Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| |
Collapse
|
10
|
Shen YB, Zhao JQ, Wang ZH, You Y, Zhou MQ, Yuan WC. DBU-catalyzed dearomative annulation of 2-pyridylacetates with α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01414e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DBU-catalyzed dearomative [3 + 3] annulation of 2-pyridylacetates and α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones was developed.
Collapse
Affiliation(s)
- Yao-Bin Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Wang C, Liu X, Wang X, Cui H, Ma Z, Ding D, Liu J, Meng L, Chen Y. Synthesis of Functionalized 4,1‐Benzothiazepines via a [4+3] Annulation between Aza‐
o‐
Quinone Methides and Pyridinium 1,4‐Zwitterionic Thiolates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chuan‐Chuan Wang
- Faculty of Science Henan University of Animal Husbandry and Economy No. 146 Yingcai Street Zhengzhou 450044 Henan People's Republic of China
| | - Xue‐Hua Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan People's Republic of China
| | - Xin‐Lu Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan People's Republic of China
| | - Hua‐Peng Cui
- Zhengzhou Tobacco Research Institute of CNTC No. 2 Fengyang Street Zhengzhou 450001 Henan People's Republic of China
| | - Zhi‐Wei Ma
- Faculty of Science Henan University of Animal Husbandry and Economy No. 146 Yingcai Street Zhengzhou 450044 Henan People's Republic of China
| | - Degang Ding
- Faculty of Science Henan University of Animal Husbandry and Economy No. 146 Yingcai Street Zhengzhou 450044 Henan People's Republic of China
| | - Jun‐Tao Liu
- Faculty of Science Henan University of Animal Husbandry and Economy No. 146 Yingcai Street Zhengzhou 450044 Henan People's Republic of China
| | - Lei Meng
- Henan Institute of Veterinary Drug and Feed Control No. 91 Jingsan Road Zhengzhou 450008 Henan People's Republic of China
| | - Ya‐Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan People's Republic of China
| |
Collapse
|
12
|
Volpe C, Meninno S, Crescenzi C, Mancinelli M, Mazzanti A, Lattanzi A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α‐Halo Acyl Halide Synthon in One Pot. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Carlo Crescenzi
- Dipartimento di Farmacia Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| | - Michele Mancinelli
- Dipartimento di Chimica Industriale Università di Bologna Viale Risorgimento 4-40136 Bologna Italy
| | - Andrea Mazzanti
- Dipartimento di Chimica Industriale Università di Bologna Viale Risorgimento 4-40136 Bologna Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132-84084 Fisciano Italy
| |
Collapse
|
13
|
Volpe C, Meninno S, Crescenzi C, Mancinelli M, Mazzanti A, Lattanzi A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α-Halo Acyl Halide Synthon in One Pot. Angew Chem Int Ed Engl 2021; 60:23819-23826. [PMID: 34437760 PMCID: PMC8596509 DOI: 10.1002/anie.202110173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/25/2022]
Abstract
An enantioselective one-pot catalytic strategy to dihydroquinoxalinones, featuring novel 1-phenylsulfonyl-1-cyano enantioenriched epoxides as masked α-halo acyl halide synthons, followed by a domino ring-opening cyclization (DROC), is documented. A popular quinine-derived urea served as the catalyst in two out of the three steps performed in the same solvent using commercially available aldehydes, (phenylsulfonyl)acetonitrile, cumyl hydroperoxide and 1,2-phenylendiamines. Medicinally relevant 3-aryl/alkyl-substituted heterocycles are isolated in generally good to high overall yield and high enantioselectivity (up to 99 % ee). A rare example of excellent reusability of an organocatalyst at higher scale, subjected to oxidative conditions, is demonstrated. Mechanistically, labile α-ketosulfone has been detected as the intermediate involved in the DROC process. Theoretical calculations on the key epoxidation step rationalize the observed stereocontrol, highlighting the important role played by the sulfone group.
Collapse
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Carlo Crescenzi
- Dipartimento di FarmaciaUniversità di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| | - Michele Mancinelli
- Dipartimento di Chimica IndustrialeUniversità di BolognaViale Risorgimento4-40136BolognaItaly
| | - Andrea Mazzanti
- Dipartimento di Chimica IndustrialeUniversità di BolognaViale Risorgimento4-40136BolognaItaly
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”Università di SalernoVia Giovanni Paolo II132-84084FiscianoItaly
| |
Collapse
|
14
|
Takagi R, Yamasaki Y. Chiral Calcium Bis-sulfonimide Catalyzed Diels-Alder Reactions of 1-Acryloyl-pyrazole. CHEM LETT 2021. [DOI: 10.1246/cl.210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yuhei Yamasaki
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
15
|
Meninno S, Carratù M, Overgaard J, Lattanzi A. Diastereoselective Synthesis of Functionalized 5-Amino-3,4-Dihydro-2H-Pyrrole-2-Carboxylic Acid Esters: One-Pot Approach Using Commercially Available Compounds and Benign Solvents. Chemistry 2021; 27:4573-4577. [PMID: 33464645 DOI: 10.1002/chem.202005262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Indexed: 11/08/2022]
Abstract
A novel three-step four-transformation approach to highly functionalized 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylic acid esters, starting from commercially available phenylsulfonylacetonitrile, aldehydes, and N-(diphenylmethylene)glycine tert-butyl ester, was developed. The one-pot strategy delivered this class of amidines bearing, for the first time, three contiguous stereocenters, in good to high yield and diastereoselectivity. The entire sequence was carried out using diethyl carbonate and 2-methyl tetrahydrofuran as benign solvents, operating under metal-free conditions. The process could be conveniently scaled-up, and the synthetic utility of the products was demonstrated.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Mario Carratù
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
16
|
Meninno S, Franco F, Benaglia M, Lattanzi A. Pyrazoleamides in Catalytic Asymmetric Reactions: Recent Advances. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Francesca Franco
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| |
Collapse
|
17
|
Hayama N. [Asymmetric Hetero-Michael Additions to α,β-Unsaturated Carboxylic Acids by Multifunctional Boronic Acid Catalysts]. YAKUGAKU ZASSHI 2021; 141:293-301. [PMID: 33642494 DOI: 10.1248/yakushi.20-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several direct asymmetric Michael additions to α,β-unsaturated carboxylic acids with integrated catalysts comprising chiral bifunctional thiourea and arylboronic acid were developed. First, the asymmetric aza-Michael addition of hydroxylamine derivatives efficiently afforded a variety of optically active β-amino acid derivatives. Furthermore, upon detailed investigation of the reaction, tetrahedral borate complexes, comprising two carboxylate molecules, were found to serve as reaction intermediates. Based on this observation, a drastic improvement in product enantioselectivity was achieved upon benzoic acid addition. Second, on merely changing the solvent, the asymmetric thia-Michael addition of arylthiols afforded both enantiomers of the adducts, which are important building blocks for biologically active compounds.
Collapse
Affiliation(s)
- Noboru Hayama
- School of Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
18
|
Hayama N, Kobayashi Y, Takemoto Y. Asymmetric hetero-Michael addition to α,β-unsaturated carboxylic acids using thiourea–boronic acid hybrid catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Devi V, Singh G, Monga V. Recent advances in the synthetic chemistry of 1,5
‐benzothiazepines
: A minireview. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Varsha Devi
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| | - Gurpreet Singh
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| | - Vikramdeep Monga
- Department of Pharmaceutical ChemistryISF College of Pharmacy Moga Punjab India
| |
Collapse
|
20
|
Wang H, Gu S, Yan Q, Ding L, Chen FE. Asymmetric catalysis in synthetic strategies for chiral benzothiazepines. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
21
|
Pandey AK, Kirberger SE, Johnson JA, Kimbrough JR, Partridge DKD, Pomerantz WCK. Efficient Synthesis of 1,4-Thiazepanones and 1,4-Thiazepanes as 3D Fragments for Screening Libraries. Org Lett 2020; 22:3946-3950. [PMID: 32347732 PMCID: PMC8324318 DOI: 10.1021/acs.orglett.0c01230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1,4-Thiazepanes and 1,4-thiazepanones represent seven-membered ring systems with highly 3D character and are currently underrepresented in fragment screening libraries. A nuclear magnetic resonance (NMR) fragment screen identified 1,4-acylthiazepanes as new BET (bromodomain and extraterminal domain) bromodomain ligands; however, an efficient and readily diversified synthesis for library development has not been reported. Here we report a one-pot synthesis using α,β-unsaturated esters and 1,2-amino thiols to form 1,4-thiazepanones as precursors to 1,4-thiazepanes with high 3D character. This reaction proceeds in reasonable time (0.5-3 h) and in good yield and tolerates a broad scope of α,β-unsaturated esters. Several 1,4-thiazepanes were synthesized by a two-step transformation and were characterized as new BET bromodomain ligands using protein-observed 19F NMR. This synthesis should provide ready access to diverse 3D fragments for screening libraries.
Collapse
Affiliation(s)
- Anil K Pandey
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danika K D Partridge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Hayama N, Kobayashi Y, Sekimoto E, Miyazaki A, Inamoto K, Kimachi T, Takemoto Y. A solvent-dependent chirality-switchable thia-Michael addition to α,β-unsaturated carboxylic acids using a chiral multifunctional thiourea catalyst. Chem Sci 2020; 11:5572-5576. [PMID: 32874501 PMCID: PMC7444369 DOI: 10.1039/d0sc01729a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
An asymmetric thia-Michael addition of arylthiols to α,β-unsaturated carboxylic acids using a thiourea catalyst that bears arylboronic acid and tertiary amine moieties is reported.
An asymmetric thia-Michael addition of arylthiols to α,β-unsaturated carboxylic acids using a thiourea catalyst that bears arylboronic acid and tertiary amine moieties is reported. Both enantiomers of the Michael adducts can be obtained in high enantioselectivity and good yield merely by changing the solvent. The origin of the chirality switch in the products was examined in each solvent via spectroscopic analyses.
Collapse
Affiliation(s)
- Noboru Hayama
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . .,School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan .
| | - Eriko Sekimoto
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Anna Miyazaki
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan .
| |
Collapse
|
23
|
Lei CW, Zhang CB, Wang ZH, Xie KX, Zhao JQ, Zhou MQ, Zhang XM, Xu XY, Yuan WC. Coumarin-3-formylpyrazoles as 3-carbon synthons in cyclocondensation for the synthesis of spiro-fused pentacyclic spirooxindoles. Org Biomol Chem 2020; 18:845-850. [PMID: 31932837 DOI: 10.1039/c9ob02434d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coumarin-3-formylpyrazoles have been synthesized and applied as 3-carbon synthons in reaction with 3-hydroxyoxindoles by using DABCO as the catalyst. A range of structurally diverse spiro-fused pentacyclic spirooxindoles, bearing a spirooxindole-γ-lactone and a 3,4-dihydrocoumarin substructure, could be smoothly obtained in good to excellent yields (up to 99%) with excellent diastereoselectivities (all cases >20 : 1 dr). The asymmetric version of this tandem reaction was preliminarily investigated by using chiral organocatalysts.
Collapse
Affiliation(s)
- Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Bao Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Ke-Xin Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China. and Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
24
|
Yin C, Yang T, Pan Y, Wen J, Zhang X. Rh-Catalyzed Asymmetric Hydrogenation of Unsaturated Medium-Ring NH Lactams: Highly Enantioselective Synthesis of N-Unprotected 2,3-Dihydro-1,5-benzothiazepinones. Org Lett 2020; 22:920-923. [PMID: 31916777 DOI: 10.1021/acs.orglett.9b04478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A straightforward method to prepare 1,5-benzothiazepines was reported. Catalyzed by a Rh/Zhaophos complex, unsaturated cyclic NH lactams with a medium-size ring were hydrogenated smoothly, giving remarkably high enantioselectivities. The sulfur atom in the substrates did not bring an inhibition which was observed with commercially available bisphosphine ligands. This method was successfully applied in the scale-up synthesis of (R)-(-)-thiazesim.
Collapse
Affiliation(s)
- Congcong Yin
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Tao Yang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Yingmin Pan
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.,Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
25
|
Franco F, Meninno S, Benaglia M, Lattanzi A. Formal α-trifluoromethylthiolation of carboxylic acid derivatives via N-acyl pyrazoles. Chem Commun (Camb) 2020; 56:3073-3076. [DOI: 10.1039/d0cc00116c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A direct and general one-pot approach to α-trifluoromethylthiolated amides, esters and carboxylic acids has been successfully developed under mild, catalytic and metal-free conditions.
Collapse
Affiliation(s)
- Francesca Franco
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | | | | |
Collapse
|
26
|
Volpe C, Meninno S, Mirra G, Overgaard J, Capobianco A, Lattanzi A. Direct α-Imination of N-Acyl Pyrazoles with Nitrosoarenes. Org Lett 2019; 21:5305-5309. [PMID: 31247764 DOI: 10.1021/acs.orglett.9b01913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unprecedented α-imino N-acyl pyrazoles were efficiently and selectively prepared through the 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed reaction of nitrosoarenes with N-acyl pyrazoles via an N-nitroso aldol reaction/dehydration sequence. The α-imino acyl pyrazoles were demonstrated to be new versatile intermediates for practical one-pot syntheses of α-imino amides, dipeptide precursors, esters, and β-amino alcohols. The synthetic method competes with known protocols in terms of ready availability of the reagents and catalyst, mild and catalytic reaction conditions, gram-scale applicability, and scope of the α-imino acid derivatives achievable.
Collapse
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano , Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano , Italy
| | - Giulia Mirra
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano , Italy
| | - Jacob Overgaard
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus , Denmark
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano , Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano , Italy
| |
Collapse
|
27
|
Xian J, Chen L, Ye L, Sun Y, Shi Z, Zhao Z, Li X. Enantioselective synthesis of fused dihydropyranones via squaramide-catalyzed Michael addition/lactonization cascade reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Volpe C, Meninno S, Capobianco A, Vigliotta G, Lattanzi A. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) Triggered Diastereoselective [3+2] Cycloaddition of Azomethine Imines and Pyrazoleamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Giovanni Vigliotta
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| |
Collapse
|
29
|
Guo WS, Gong H, Zhang YA, Wen LR, Li M. Fast Construction of 1,3-Benzothiazepines by Direct Intramolecular Dehydrogenative C–S Bond Formation of Thioamides under Metal-Free Conditions. Org Lett 2018; 20:6394-6397. [DOI: 10.1021/acs.orglett.8b02697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei-Si Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Hao Gong
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yan-An Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
30
|
Meninno S, Quaratesi I, Volpe C, Mazzanti A, Lattanzi A. Catalytic enantioselective one-pot approach to cis- and trans-2,3-diaryl substituted 1,5-benzothiazepines. Org Biomol Chem 2018; 16:6923-6934. [PMID: 30226256 DOI: 10.1039/c8ob01988f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first enantioselective catalytic approach to cis- and trans-2,3-diaryl substituted 1,5-benzothiazepines has been conveniently developed in a one-pot fashion, starting from α,β-unsaturated acyl pyrazoles and 2-aminothiophenol. The organocatalytic two-step sulfa-Michael/lactamization sequence is promoted by a readily available bifunctional thiourea and p-toluenesulfonic acid, respectively. The protocol enables access to both N-unprotected cis- and trans-diastereoisomers in moderate to satisfactory overall yields (up to 84%) and good to excellent ee values (up to 99%). Mechanistic investigations helped to shed light on the regio- and stereoselective outcome of the process.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, Italy.
| | | | | | | | | |
Collapse
|
31
|
Liu G, Han Z, Dong XQ, Zhang X. Rh-Catalyzed Asymmetric Hydrogenation of β-Substituted-β-thio-α,β-unsaturated Esters: Expeditious Access to Chiral Organic Sulfides. Org Lett 2018; 20:5636-5639. [DOI: 10.1021/acs.orglett.8b02339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gang Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhengyu Han
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
32
|
De Simone NA, Meninno S, Talotta C, Gaeta C, Neri P, Lattanzi A. Solvent-Free Enantioselective Michael Reactions Catalyzed by a Calixarene-Based Primary Amine Thiourea. J Org Chem 2018; 83:10318-10325. [PMID: 29961331 DOI: 10.1021/acs.joc.8b01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An upper-rim functionalized calix[4]arene-based thiourea installed onto the ( R, R)-1,2-cyclohexanediamine scaffold was synthesized with a view to investigate its catalytic ability in enantioselective Michael additions. The reactions were found to conveniently proceed under solvent-free conditions, observing good to high enantioselectivities. From this preliminary study, the calix[4]arene unit is likely to play a role in affecting the conversion and to a lesser extent to the stereochemical outcome of the reactions through van der Waals contacts and C-H···π interactions with the substrates.
Collapse
Affiliation(s)
- Nicola Alessandro De Simone
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano (Salerno) , Italy
| |
Collapse
|
33
|
Affiliation(s)
- Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
34
|
Hirashima SI, Narushima T, Kawada M, Nakashima K, Hanai K, Koseki Y, Miura T. Asymmetric Conjugate Additions of Carbonyl Compounds to Nitroalkenes under Solvent-Free Conditions Using Fluorous Diaminomethylenemalononitrile Organocatalyst. Chem Pharm Bull (Tokyo) 2018; 65:1185-1190. [PMID: 29199223 DOI: 10.1248/cpb.c17-00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel fluorous organocatalyst bearing a diaminomethylenemalononitrile motif is prepared. The fluorous organocatalyst efficiently promotes asymmetric conjugate additions of ketones to nitroalkenes and results in high yields of these addition products with excellent enantioselectivities under solvent-free conditions.
Collapse
Affiliation(s)
| | | | | | | | - Kaori Hanai
- Tokyo University of Pharmacy and Life Sciences
| | - Yuji Koseki
- Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
35
|
|
36
|
Meninno S, Naddeo S, Varricchio L, Capobianco A, Lattanzi A. Stereoselective organocatalytic sulfa-Michael reactions of aryl substituted α,β-unsaturated N-acyl pyrazoles. Org Chem Front 2018. [DOI: 10.1039/c8qo00357b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of functionalised sulfides has been obtained in good to high stereoselectivity via sulfa-Michael reaction of α,β-unsaturated N-acyl pyrazoles with thiols or thioacetic acid using readily available organocatalysts and working under mild conditions.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Universita’ di Salerno
- Fisciano
- Italy
| | - Simone Naddeo
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Universita’ di Salerno
- Fisciano
- Italy
| | - Luca Varricchio
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Universita’ di Salerno
- Fisciano
- Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Universita’ di Salerno
- Fisciano
- Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Universita’ di Salerno
- Fisciano
- Italy
| |
Collapse
|
37
|
Fukata Y, Yao K, Miyaji R, Asano K, Matsubara S. Asymmetric Net Cycloaddition for Access to Diverse Substituted 1,5-Benzothiazepines. J Org Chem 2017; 82:12655-12668. [DOI: 10.1021/acs.joc.7b02451] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yukihiro Fukata
- Department of Material Chemistry, Graduate
School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Koichi Yao
- Department of Material Chemistry, Graduate
School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Ryota Miyaji
- Department of Material Chemistry, Graduate
School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Keisuke Asano
- Department of Material Chemistry, Graduate
School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate
School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Fang C, Lu T, Zhu J, Sun K, Du D. Formal [3 + 4] Annulation of α,β-Unsaturated Acyl Azoliums: Access to Enantioenriched N-H-Free 1,5-Benzothiazepines. Org Lett 2017; 19:3470-3473. [PMID: 28598636 DOI: 10.1021/acs.orglett.7b01457] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An unprecedented formal [3 + 4] annulation of α,β-unsaturated acyl azoliums with 2-aminobenzenethiols has been utilized to synthesize enantioenriched N-H-free 1,5-benzothiazepines, which are recognized as privileged structures in numerous biologically active scaffolds. This protocol offers a rapid and direct pathway to access the target compounds with high enantioselectivities and has been applied in the concise synthesis of chiral drug (R)-thiazesim.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University , Nanjing, 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University , Nanjing, 210009, P. R. China
| | - Jindong Zhu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University , Nanjing, 210009, P. R. China
| | - Kewen Sun
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University , Nanjing, 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University , Nanjing, 210009, P. R. China
| |
Collapse
|