1
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Naina VR, Krätschmer F, Roesky PW. Selective coordination of coinage metals using orthogonal ligand scaffolds. Chem Commun (Camb) 2022; 58:5332-5346. [PMID: 35416815 DOI: 10.1039/d2cc01093c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group 11 metal complexes with their ability to form metallophilic interations are widely pursued to develop multifunctional luminescent materials. Heteronuclear coinage metal complexes are promising candidates to tune electronic and optical properties which are not readily accessed by their homometallic congeners. In this review, we present the concept of orthogonal ligands which are rationally designed to access heteronuclear coinage metal complexes and studied in terms of their photophysical properties. Bifunctional ligands containing soft and hard donor atoms have the potential of providing different coordination modes to selectively synthesise heterobimetallic complexes in a predictable manner. This review deals with ligand sets composed of pyridine, bipyridine- or iminopyridine-substituted NHCs featuring C-N coordination modes, phosphine-based N-heterocycles and amidinate ligand scaffolds comprising of P-N functionalities and mixed phosphine-phosphine oxide with P-O donor sites. Therefore, the scope of this perspective is the discussion of heteronuclear coinage metal complexes supported by recently developed bifunctional ligands in terms of their synthesis, coordination geometries and tunability of optical properties when compared to their homometallic analogues.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Kirst C, Tietze J, Mayer P, Böttcher H, Karaghiosoff K. Coinage Metal Complexes of Bis(quinoline-2-ylmethyl)phenylphosphine-Simple Reactions Can Lead to Unprecedented Results. ChemistryOpen 2022; 11:e202100224. [PMID: 35146971 PMCID: PMC8889507 DOI: 10.1002/open.202100224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine (bqmpp) towards selected CuI , AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4 ]BF4 , compound 1 [Cu2 (bqmpp)2 ](BF4 )2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4 Cl3 (bqmpp)2 ]BF4 contains a rarely observed Cu4 Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6 ] with the ligand leads to a dinuclear compound (3) in solution as confirmed by 31 P{1 H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3, a tris(quinoline-2-ylmethyl)bisphenyl-phosphine (tqmbp) compound [Ag2 (tqmbp)2 ](SbF6 )2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2 (bqmpp)2 ]PF6 (5) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI .
Collapse
Affiliation(s)
- Christin Kirst
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Jonathan Tietze
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Hans‐Christian Böttcher
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Konstantin Karaghiosoff
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| |
Collapse
|
4
|
Dahlen M, Seifert TP, Lebedkin S, Gamer MT, Kappes MM, Roesky PW. Tetra- and hexanuclear string complexes of the coinage metals. Chem Commun (Camb) 2021; 57:13146-13149. [PMID: 34807965 DOI: 10.1039/d1cc06034a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the PNNP ligand system N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate (dpfam) featuring different coordination compartments with [AuCl(tht)], [CuMes]5, [AgMes]4, or [AuC6F5(tht)] (tht = tetrahydrothiophene) resulted in tetranuclear homo- and heterometallic coinage metal complexes, as well as a hexanuclear gold complex. All of them feature a metal string conformation. Photophysical investigation revealed a significant dependence of the photoluminescence properties on the metal composition. Below 100 K, the PL efficiency of three compounds approaches nearly 100%.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Tim P Seifert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Manfred M Kappes
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| |
Collapse
|
5
|
Dahlen M, Hollesen EH, Kehry M, Gamer MT, Lebedkin S, Schooss D, Kappes MM, Klopper W, Roesky PW. Bright Luminescence in Three Phases—A Combined Synthetic, Spectroscopic and Theoretical Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Eike H. Hollesen
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Max Kehry
- Karlsruhe Institute of Technology (KIT) Institute of Physical Chemistry (Theoretical Chemistry) Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Michael T. Gamer
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Detlef Schooss
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT) Institute of Physical Chemistry (Theoretical Chemistry) Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
6
|
Dahlen M, Hollesen EH, Kehry M, Gamer MT, Lebedkin S, Schooss D, Kappes MM, Klopper W, Roesky PW. Bright Luminescence in Three Phases-A Combined Synthetic, Spectroscopic and Theoretical Approach. Angew Chem Int Ed Engl 2021; 60:23365-23372. [PMID: 34415105 PMCID: PMC8597132 DOI: 10.1002/anie.202110043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/08/2023]
Abstract
Combining phase-dependent photoluminescence (PL) measurements and quantum chemical calculations is a powerful approach to help understand the influence of the molecular surroundings on the PL properties. Herein, a phosphine functionalized amidinate was used to synthesize a recently presented bimetallic gold complex, featuring an unusual charge separation. The latter was subsequently used as metalloligand to yield heterotetrametallic complexes with an Au-M-M-Au "molecular wire" arrangement (M=Cu, Ag, Au) featuring metallophilic interactions. All compounds show bright phosphorescence in the solid state, also at ambient temperature. The effect of the molecular environment on the PL was studied in detail for these tetrametallic complexes by comparative measurements in solution, in the solid state and in the gas phase and contrasted to time-dependent density functional theory computations.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Eike H. Hollesen
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Max Kehry
- Karlsruhe Institute of Technology (KIT)Institute of Physical Chemistry (Theoretical Chemistry)Kaiserstrasse 1276131KarlsruheGermany
| | - Michael T. Gamer
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Sergei Lebedkin
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Detlef Schooss
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Manfred M. Kappes
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT)Institute of Physical Chemistry (Theoretical Chemistry)Kaiserstrasse 1276131KarlsruheGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| |
Collapse
|
7
|
Dahlen M, Kehry M, Lebedkin S, Kappes MM, Klopper W, Roesky PW. Bi- and trinuclear coinage metal complexes of a PNNP ligand featuring metallophilic interactions and an unusual charge separation. Dalton Trans 2021; 50:13412-13420. [PMID: 34477184 DOI: 10.1039/d1dt02226a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A selective synthesis of bi- and trinuclear complexes featuring a tetradentate monoanionic PNNP ligand is presented. The binuclear coinage metal complexes show a typical fourfold coordination for Cu and Ag, which changes to a bifold coordination for Au. The latter is accompanied by an unusual charge separation. Optical properties are investigated using photoluminescence spectroscopy and complemented by time-dependent density-functional-theory calculations. All compounds demonstrate clearly distinguished features dependent on the metals chosen and differences in the complex scaffold.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Max Kehry
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
8
|
Braunstein P, Danopoulos AA. Transition Metal Chain Complexes Supported by Soft Donor Assembling Ligands. Chem Rev 2021; 121:7346-7397. [PMID: 34080835 DOI: 10.1021/acs.chemrev.0c01197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemistry of discrete molecular chains constituted by metals in low oxidation states, displaying metal-metal proximity and stabilized by suitable metal-bridging, assembling ligands comprising at least one soft donor atom is comprehensively reviewed; complexes with a single (hard or soft) bridging atom (e.g., μ-halide, μ-sulfide, or μ-PR2 etc.) as well as "closed" metal arrays (that fall in the realm of cluster chemistry) are excluded. The focus is on transition metal-based systems, with few excursions to cases combining transition and post-transition elements. Most relevant supporting ligands have neutral C, P, O, or S donor (mainly, N-heterocyclic carbene, phosphine, ether, thioether) or anionic donor (mainly phenyl, ylide, silyl, phosphide, thiolate) groups. A supporting-ligand-based classification of the metal chains is introduced, using as the classifying parameter the number of "bites" (i.e., ligand bridges) subtending each intermetallic separation. The ligands are further grouped according to the number of donor atoms interacting with the metal chain (called denticity in the following) and the column of the Periodic Table to which the set of donor atoms belongs (in ascending order). A complementary metal-based compilation of the complexes discussed is also provided in a concise tabular form.
Collapse
Affiliation(s)
- Pierre Braunstein
- CNRS, Chimie UMR 7177, Laboratoire de Chimie de Coordination, Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France
| | - Andreas A Danopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
9
|
Dayanova IR, Shamsieva AV, Strelnik ID, Gerasimova TP, Kolesnikov IE, Fayzullin RR, Islamov DR, Saifina AF, Musina EI, Hey-Hawkins E, Karasik AA. Assembly of Heterometallic AuICu 2I 2 Cores on the Scaffold of NPPN-Bridging Cyclic Bisphosphine. Inorg Chem 2021; 60:5402-5411. [PMID: 33759505 DOI: 10.1021/acs.inorgchem.1c00442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The row of metallocyclic dinuclear gold(I) complexes with cyclic diphosphines, namely, P-pyridylethyl-substituted 1,5-diaza-3,7-diphosphacyclooctanes, has been obtained. Further interaction of the dinuclear gold(I) complexes with copper(I) iodide gave the first examples of hexanuclear AuI/CuI complexes containing two unusual trinuclear AuICu2I2 fragments. The structures of di- and hexanuclear complexes were confirmed by NMR spectroscopy, ESI mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. All of the obtained complexes are moderate emitters in the solid state. Dinuclear gold(I) complexes displayed a greenish emission with the maxima in the emission spectra at ca. 550 nm. The obtained hexanuclear heterobimetallic AuI/CuI complexes are triplet solid-state blue emitters with the maximum in the emission spectra at 463 and 484 nm. According to the TD-DFT calculations, the observed emission of all studied complexes had a triplet origin and was caused by the 3CC or 3(MLCT) T1 → S0 transitions for dinuclear and hexanuclear complexes, respectively.
Collapse
Affiliation(s)
- Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Aliia V Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Saint Petersburg State University, 5 Ulianovskaya Street, 198504 Saint Petersburg, Russian Federation
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Daut R Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation
| |
Collapse
|
10
|
McTernan CT, Ronson TK, Nitschke JR. Selective Anion Binding Drives the Formation of Ag I8L 6 and Ag I12L 6 Six-Stranded Helicates. J Am Chem Soc 2021; 143:664-670. [PMID: 33382246 PMCID: PMC7879535 DOI: 10.1021/jacs.0c11905] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Here we describe the formation of an unexpected and unique family of hollow six-stranded helicates. The formation of these structures depends on the coordinative flexibility of silver and the 2-formyl-1,8-napthyridine subcomponent. Crystal structures show that these assemblies are held together by Ag4I, Ag4Br, or Ag6(SO4)2 clusters, where the templating anion plays an integral structure-defining role. Prior to the addition of the anionic template, no six-stranded helicate was observed to form, with the system instead consisting of a dynamic mixture of triple helicate and tetrahedron. Six-stranded helicate formation was highly sensitive to the structure of the ligand, with minor modifications inhibiting its formation. This work provides an unusual example of mutual stabilization between metal clusters and a self-assembled metal-organic cage. The selective preparation of this anisotropic host demonstrates new modes of guiding selective self-assembly using silver(I), whose many stable coordination geometries render design difficult.
Collapse
Affiliation(s)
- Charlie T. McTernan
- Department of Chemistry, University of Cambridge,
Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge,
Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge,
Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Seifert TP, Naina VR, Feuerstein TJ, Knöfel ND, Roesky PW. Molecular gold strings: aurophilicity, luminescence and structure-property correlations. NANOSCALE 2020; 12:20065-20088. [PMID: 33001101 DOI: 10.1039/d0nr04748a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This review covers the compound class of one-dimensional gold strings. These compounds feature a formally infinite repetition of gold complexes as monomers/repeating units that are held together by aurophilic interactions, i.e. direct gold-gold contacts. Their molecular structures are primarily determined in the solid state using single crystal X-ray diffraction. The chemical composition of the employed gold complexes is diverse and furthermore plays a key role in terms of structure characteristics and the resulting properties. One of the most common features of gold strings is their photoluminescence upon UV excitation. The emission energy is often dependent on the distance of adjacent gold ions and the electronic structure of the whole string. In terms of gold strings, these parameters can be fine-tuned by external stimuli such as solvent, pH value, pressure or mechanical stress. This leads to direct structure-property correlations, not only with regard to the photophysical properties, but also electric conductivity for potential application in nanoelectronics. Concerning these correlations, gold strings, consisting of self-assembled individual complexes as building blocks, are the ideal compound class to look at, as perturbations by an inhomogeneity in the ligand sphere (such as the end of a molecule) can be neglected. Therefore, the aim of this review is to shed light on the past achievements and current developments in this area.
Collapse
Affiliation(s)
- Tim P Seifert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Thomas J Feuerstein
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Nicolai D Knöfel
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
12
|
Stollenz M. Linear Copper Complex Arrays as Versatile Molecular Strings: Syntheses, Structures, Luminescence, and Magnetism. Chemistry 2019; 25:4274-4298. [PMID: 30357943 DOI: 10.1002/chem.201803914] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 01/04/2023]
Abstract
The defined linear arrangement of metal atoms in discrete coordination complexes or polymers is still one of the most intriguing challenges in synthetic chemistry. These chain arrangements are of fundamental importance, because of their potential applications as molecular wires and single molecule magnets (SMM) in microelectronic devices on a molecular scale. Oligonuclear Group 11 metal complexes with suitable bridging ligands, specifically those that are based on copper as the first choice of a cheap precursor coinage metal, are of particular interest in this regard. This is due to the superior luminescence properties of these linear clusters that often show d10 ⋅⋅⋅d10 interactions in their molecular structures. The combination of CuI with heavier coinage metal ions results in tunable emissive arrays that are also stimuli-responsive. Thus, both linear multinuclear CuI and linear heteropolymetallic CuI /AgI as well as CuI /AuI clusters are excellent candidates for applications in molecular/organic light-emitting devices (OLEDs). Alternatively, paramagnetic multinuclear cupric arrays are prominent as potential molecular wires with enhanced magnetic properties through multiple coupled d9 centers. This Review covers the whole range of linear multinuclear assemblies of cuprous and cupric ions in complexes and coordination polymers, their syntheses, photophysical behavior, and magnetic properties. Moreover, recent advances in the rapidly progressing field of hetero-CuI /AgI and CuI /AuI molecular strings are also discussed.
Collapse
Affiliation(s)
- Michael Stollenz
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, MD#1203, Kennesaw, GA, 30144, USA
| |
Collapse
|
13
|
Gil-Rubio J, Vicente J. The Coordination and Supramolecular Chemistry of Gold Metalloligands. Chemistry 2017; 24:32-46. [DOI: 10.1002/chem.201703574] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Juan Gil-Rubio
- Departamento de Química Inorgánica. Facultad de Química; Universidad de Murcia; Campus de Espinardo. 30100 Murcia Spain
| | - José Vicente
- Departamento de Química Inorgánica. Facultad de Química; Universidad de Murcia; Campus de Espinardo. 30100 Murcia Spain
| |
Collapse
|
14
|
Kaub C, Lebedkin S, Bestgen S, Köppe R, Kappes MM, Roesky PW. Defined tetranuclear coinage metal chains. Chem Commun (Camb) 2017; 53:9578-9581. [DOI: 10.1039/c7cc04705c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterodimetallic gold/copper and gold/silver complexes were synthesized, and feature an unprecedented V-shape or linear MAu2M (M = Cu, Ag) setup in the solid state. Photoluminescence properties of the complexes strongly depend on the metal.
Collapse
Affiliation(s)
- Christoph Kaub
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Sebastian Bestgen
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Ralf Köppe
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute of Physical Chemistry
| | - Peter W. Roesky
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|