1
|
Bailie AE, Sansom HG, Fisher RS, Watabe R, Tor Y, Jones AC, Magennis SW. Ultrasensitive detection of a responsive fluorescent thymidine analogue in DNA via pulse-shaped two-photon excitation. Phys Chem Chem Phys 2024; 26:26823-26833. [PMID: 39404501 PMCID: PMC11476554 DOI: 10.1039/d4cp03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Fluorescent base analogues (FBAs) are versatile nucleic acid labels that can replace a native nucleobase, while maintaining base pairing and secondary structure. Following the recent demonstration that free FBAs can be detected at the single-molecule level, the next goal is to achieve this level of detection sensitivity in oligonucleotides. Due to the short-wavelength absorption of most FBAs, multiphoton microscopy has emerged as a promising approach to single-molecule detection. We report the multiphoton-induced fluorescence of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (MeOthaU), a polarity-sensitive fluorescent thymidine analogue, as a nucleoside, and in two single-stranded deoxyribo-oligonucleotides, with and without their complementary strands. Ensemble steady-state and time-resolved measurements in dioxane, following one-photon and two-photon excitation, reveals both strongly and weakly emissive species, assigned as rotamers, while in Tris buffer there are additional non-emissive states, which are attributed to tautomeric forms populated in aqueous environments. The two-photon (2P) brightness for MeOthaU is highest as the free nucleoside in dioxane (10 GM) and lowest as the free nucleoside in Tris buffer (0.05 GM). The species-averaged 2P brightness values in DNA are higher for the single strands (0.66 and 0.82 GM for sequence context AXA and AXT, respectively, where X is MeOthaU) than in the duplex (0.31 and 0.25 GM for AXA and AXT, respectively). Using 2P microscopy with pulse-shaped broadband excitation, we were able to detect single- and double-stranded oligos with a molecular brightness of 0.8-0.9 kHz per molecule. This allowed the detection of as few as 7 DNA molecules in the focus, making it the brightest responsive FBA in an oligonucleotide reported to date.
Collapse
Affiliation(s)
- Alexandra E Bailie
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Henry G Sansom
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| | - Rachel S Fisher
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Ryo Watabe
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Hirashima S, Park S, Sugiyama H. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes. Chemistry 2023; 29:e202203961. [PMID: 36700521 PMCID: PMC10332638 DOI: 10.1002/chem.202203961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Förster resonance energy transfer (FRET) is an attractive tool for understanding biomolecular dynamics. FRET-based analysis of nucleosomes has the potential to fill the knowledge gaps between static structures and dynamic cellular behaviors. Compared with typical FRET pairs using bulky fluorophores introduced by flexible linkers, fluorescent nucleoside-based FRET pair has great potential since it can be fitted within the helical structures of nucleic acids. Herein we report on the construction of nucleosomes containing a nucleobase FRET pair and the investigation of experimental and theoretical FRET efficiencies through steady-state fluorescence spectroscopy and calculation based on molecular dynamics simulations, respectively. Distinguishable experimental FRET efficiencies were observed depending on the positions of FRET pairs in nucleosomal DNA. The tendency could be supported by theoretical study. This work suggests the possibility of our approach to analyze structural changes of nucleosomes by epigenetic modifications or internucleosomal interactions.
Collapse
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Kumagai T, Kinoshita B, Hirashima S, Sugiyama H, Park S. Thiophene-Extended Fluorescent Nucleosides as Molecular Rotor-Type Fluorogenic Sensors for Biomolecular Interactions. ACS Sens 2023; 8:923-932. [PMID: 36740828 DOI: 10.1021/acssensors.2c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.
Collapse
Affiliation(s)
- Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ban Kinoshita
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Ciaco S, Gavvala K, Greiner V, Mazzoleni V, Didier P, Ruff M, Martinez-Fernandez L, Improta R, Mely Y. Thienoguanosine brightness in DNA duplexes is governed by the localization of its ππ* excitation in the lowest energy absorption band. Methods Appl Fluoresc 2022; 10. [PMID: 35472854 DOI: 10.1088/2050-6120/ac6ab6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5' flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3' by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3' flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ~350 nm and ~310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pure * excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3' flanking C residue was replaced by an A residue in the free duplex, or when its 5' flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.
Collapse
Affiliation(s)
- Stefano Ciaco
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Krishna Gavvala
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Vanille Greiner
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Viola Mazzoleni
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Pascal Didier
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Marc Ruff
- IGBMC, University of Strasbourg, 1 Rue Laurent Fries, 67400 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| | - Lara Martinez-Fernandez
- Departamento de Química, Universidad Autónoma de Madrid, Facultad de Ciencias and Institute for Advanced Research in Chemistry, Madrid, Madrid, 28049, SPAIN
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini Consiglio Nazionale delle Ricerche, Consiglio Nazionale delle Ricerche, Napoli, Campania, 80134, ITALY
| | - Yves Mely
- UMR 7021, University of Strasbourg, 74 route du Rhin, CS 60024, 67401 ILLKIRCH Cedex, Strasbourg, Grand Est, 67070, FRANCE
| |
Collapse
|
5
|
Choi H, Kim H, Kim KT. Fluorescent nucleobase analogs constructed by
aldol‐type
condensation: Design, properties, and synthetic optimization for fluorogenic labeling of
5‐formyluracil. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hayeon Choi
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Hokyung Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
6
|
Kawai H, Doi T, Ito Y, Kameyama T, Torimoto T, Kashida H, Asanuma H. Perylene-Cy3 FRET System to Analyze Photoactive DNA Structures. Chemistry 2021; 27:12845-12850. [PMID: 34269491 DOI: 10.1002/chem.202101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/10/2022]
Abstract
We report a new Förster resonance energy transfer (FRET) system for structural analyses of DNA duplexes using perylene and Cy3 as donor and acceptor, respectively, linked at the termini of a DNA duplex via D-threoninol. Experimentally obtained FRET efficiencies were in good agreement with theoretical values calculated based on canonical B-form DNA. Due to the relatively long Förster radius, this system can be used to analyze large DNA structures, and duplexes containing photo-reactive molecules can be analyzed since perylene can be excited with visible light. The system was used to analyze a DNA duplex containing stilbene, demonstrating that in the region of the stilbene cluster the duplex adopts a ladder-like structure rather than helical one. Upon photodimerization between stilbene residues, FRET efficiencies indicated the reaction does not disturb DNA duplex. This FRET system will be useful for analysis of photoreactions of nucleobases as well as a wide range of nucleic acid structures.
Collapse
Affiliation(s)
- Hayato Kawai
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tetsuya Doi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tatsuya Kameyama
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tsukasa Torimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
7
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
8
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
9
|
Feng Y, Endo M, Sugiyama H. Nucleosomes and Epigenetics from a Chemical Perspective. Chembiochem 2020; 22:595-612. [PMID: 32864867 DOI: 10.1002/cbic.202000332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Nucleosomes, which are the fundamental building blocks of chromatin, are highly dynamic, they play vital roles in the formation of higher-order chromatin structures and orchestrate gene regulation. Nucleosome structures, histone modifications, nucleosome-binding proteins, and their functions are being gradually unravelled with the development of epigenetics. With the continuous development of research approaches such as cryo-EM, FRET and next-generation sequencing for genome-wide analysis of nucleosomes, the understanding of nucleosomes is getting wider and deeper. Herein, we review recent progress in research on nucleosomes and epigenetics, from nucleosome structure to chromatin formation, with a focus on chemical aspects. Basic knowledge of the nucleosome (nucleosome structure, nucleosome position sequence, nucleosome assembly and remodeling), epigenetic modifications, chromatin structure, chemical biology methods and nucleosome, observation nucleosome by AFM, phase separation and nucleosomes are described in this review.
Collapse
Affiliation(s)
- Yihong Feng
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida-Ushinomiyacho, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Wypijewska Del Nogal A, Füchtbauer AF, Bood M, Nilsson JR, Wranne MS, Sarangamath S, Pfeiffer P, Rajan VS, El-Sagheer AH, Dahlén A, Brown T, Grøtli M, Wilhelmsson LM. Getting DNA and RNA out of the dark with 2CNqA: a bright adenine analogue and interbase FRET donor. Nucleic Acids Res 2020; 48:7640-7652. [PMID: 32558908 PMCID: PMC7641321 DOI: 10.1093/nar/gkaa525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
With the central role of nucleic acids there is a need for development of fluorophores that facilitate the visualization of processes involving nucleic acids without perturbing their natural properties and behaviour. Here, we incorporate a new analogue of adenine, 2CNqA, into both DNA and RNA, and evaluate its nucleobase-mimicking and internal fluorophore capacities. We find that 2CNqA displays excellent photophysical properties in both nucleic acids, is highly specific for thymine/uracil, and maintains and slightly stabilises the canonical conformations of DNA and RNA duplexes. Moreover, the 2CNqA fluorophore has a quantum yield in single-stranded and duplex DNA ranging from 10% to 44% and 22% to 32%, respectively, and a slightly lower one (average 12%) inside duplex RNA. In combination with a comparatively strong molar absorptivity for this class of compounds, the resulting brightness of 2CNqA inside double-stranded DNA is the highest reported for a fluorescent base analogue. The high, relatively sequence-independent quantum yield in duplexes makes 2CNqA promising as a nucleic acid label and as an interbase Förster resonance energy transfer (FRET) donor. Finally, we report its excellent spectral overlap with the interbase FRET acceptors qAnitro and tCnitro, and demonstrate that these FRET pairs enable conformation studies of DNA and RNA.
Collapse
Affiliation(s)
- Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and EarlyDevelopment, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Vinoth Sundar Rajan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Afaf H El-Sagheer
- Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Anders Dahlén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Tom Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
11
|
Kuchlyan J, Martinez-Fernandez L, Mori M, Gavvala K, Ciaco S, Boudier C, Richert L, Didier P, Tor Y, Improta R, Mély Y. What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe? J Am Chem Soc 2020; 142:16999-17014. [PMID: 32915558 DOI: 10.1021/jacs.0c06165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thienoguanosine (thG) is an isomorphic guanosine (G) surrogate that almost perfectly mimics G in nucleic acids. To exploit its full potential and lay the foundation for future applications, 20 DNA duplexes, where the bases facing and neighboring thG were systematically varied, were thoroughly studied using fluorescence spectroscopy, molecular dynamics simulations, and mixed quantum mechanical/molecular mechanics calculations, yielding a comprehensive understanding of its photophysics in DNA. In matched duplexes, thG's hypochromism was larger for flanking G/C residues but its fluorescence quantum yield (QY) and lifetime values were almost independent of the flanking bases. This was attributed to high duplex stability, which maintains a steady orientation and distance between nucleobases, so that a similar charge transfer (CT) mechanism governs the photophysics of thG independently of its flanking nucleobases. thG can therefore replace any G residue in matched duplexes, while always maintaining similar photophysical features. In contrast, the local destabilization induced by a mismatch or an abasic site restores a strong dependence of thG's QY and lifetime values on its environmental context, depending on the CT route efficiency and solvent exposure of thG. Due to this exquisite sensitivity, thG appears ideal for monitoring local structural changes and single nucleotide polymorphism. Moreover, thG's dominant fluorescence lifetime in DNA is unusually long (9-29 ns), facilitating its selective measurement in complex media using a lifetime-based or a time-gated detection scheme. Taken together, our data highlight thG as an outstanding emissive substitute for G with good QY, long fluorescence lifetimes, and exquisite sensitivity to local structural changes.
Collapse
Affiliation(s)
- Jagannath Kuchlyan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Mattia Mori
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.,Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
12
|
Hirashima S, Sugiyama H, Park S. Construction of a FRET System in a Double-Stranded DNA Using Fluorescent Thymidine and Cytidine Analogs. J Phys Chem B 2020; 124:8794-8800. [DOI: 10.1021/acs.jpcb.0c06879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
14
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase-Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020; 59:6760-6764. [PMID: 32052536 PMCID: PMC7187157 DOI: 10.1002/anie.201916707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022]
Abstract
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+ . The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding-site mapping and may also be applied for responsive aptamer devices.
Collapse
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
15
|
Didier P, Kuchlyan J, Martinez-Fernandez L, Gosset P, Léonard J, Tor Y, Improta R, Mély Y. Deciphering the pH-dependence of ground- and excited-state equilibria of thienoguanine. Phys Chem Chem Phys 2020; 22:7381-7391. [PMID: 32211689 DOI: 10.1039/c9cp06931c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.
Collapse
Affiliation(s)
- Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Füchtbauer AF, Wranne MS, Bood M, Weis E, Pfeiffer P, Nilsson JR, Dahlén A, Grøtli M, Wilhelmsson LM. Interbase FRET in RNA: from A to Z. Nucleic Acids Res 2019; 47:9990-9997. [PMID: 31544922 PMCID: PMC6821158 DOI: 10.1093/nar/gkz812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
Interbase FRET can reveal highly detailed information about distance, orientation and dynamics in nucleic acids, complementing the existing structure and dynamics techniques. We here report the first RNA base analogue FRET pair, consisting of the donor tCO and the non-emissive acceptor tCnitro. The acceptor ribonucleoside is here synthesised and incorporated into RNA for the first time. This FRET pair accurately reports the average structure of A-form RNA, and its utility for probing RNA structural changes is demonstrated by monitoring the transition from A- to Z-form RNA. Finally, the measured FRET data were compared with theoretical FRET patterns obtained from two previously reported Z-RNA PDB structures, to shed new light on this elusive RNA conformation.
Collapse
Affiliation(s)
- Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Weis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-412 96, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
17
|
Nobis D, Fisher RS, Simmermacher M, Hopkins PA, Tor Y, Jones AC, Magennis SW. Single-Molecule Detection of a Fluorescent Nucleobase Analogue via Multiphoton Excitation. J Phys Chem Lett 2019; 10:5008-5012. [PMID: 31397575 PMCID: PMC7024020 DOI: 10.1021/acs.jpclett.9b02108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ability to routinely detect fluorescent nucleobase analogues at the single-molecule level would create a wealth of opportunities to study nucleic acids. We report the multiphoton-induced fluorescence and single-molecule detection of a dimethylamine-substituted extended-6-aza-uridine (DMAthaU). We show that DMAthaU can exist in a highly fluorescent form, emitting strongly in the visible region (470-560 nm). Using pulse-shaped broadband Ti:sapphire laser excitation, DMAthaU undergoes two-photon (2P) absorption at low excitation powers, switching to three-photon (3P) absorption at high incident intensity. The assignment of a 3P process is supported by cubic response calculations. Under both 2P and 3P excitation, the single-molecule brightness was over an order of magnitude higher than reported previously for any fluorescent base analogue, which facilitated the first single-molecule detection of an emissive nucleoside with multiphoton excitation.
Collapse
Affiliation(s)
- David Nobis
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Rachel S. Fisher
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Mats Simmermacher
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Patrycja A. Hopkins
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anita C. Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- Corresponding Authors (A.C.J.)., (S.W.M.)
| | - Steven W. Magennis
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
- Corresponding Authors (A.C.J.)., (S.W.M.)
| |
Collapse
|
18
|
Han JH, Hirashima S, Park S, Sugiyama H. Highly sensitive and selective mercury sensor based on mismatched base pairing with dioxT. Chem Commun (Camb) 2019; 55:10245-10248. [PMID: 31393473 DOI: 10.1039/c9cc05123f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly selective and sensitive sensor for mercury was designed based on a new fluorescent nucleobase, dioxT. Its metal-sensing ability was investigated using mismatched dioxT-T and dioxT-C base pairing. The sensor exhibited a high sensitivity (quenching efficiency, 80%, 1 : 1 binding mode) and selectivity upon the addition of mercury ions.
Collapse
Affiliation(s)
- Ji Hoon Han
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
19
|
Kim D, Hur J, Han JH, Ha SC, Shin D, Lee S, Park S, Sugiyama H, Kim KK. Sequence preference and structural heterogeneity of BZ junctions. Nucleic Acids Res 2019; 46:10504-10513. [PMID: 30184200 PMCID: PMC6212838 DOI: 10.1093/nar/gky784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
BZ junctions, which connect B-DNA to Z-DNA, are necessary for local transformation of B-DNA to Z-DNA in the genome. However, the limited information on the junction-forming sequences and junction structures has led to a lack of understanding of the structural diversity and sequence preferences of BZ junctions. We determined three crystal structures of BZ junctions with diverse sequences followed by spectroscopic validation of DNA conformation. The structural features of the BZ junctions were well conserved regardless of sequences via the continuous base stacking through B-to-Z DNA with A-T base extrusion. However, the sequence-dependent structural heterogeneity of the junctions was also observed in base step parameters that are correlated with steric constraints imposed during Z-DNA formation. Further, circular dichroism and fluorescence-based analysis of BZ junctions revealed that a base extrusion was only found at the A-T base pair present next to a stable dinucleotide Z-DNA unit. Our findings suggest that Z-DNA formation in the genome is influenced by the sequence preference for BZ junctions.
Collapse
Affiliation(s)
- Doyoun Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jeonghwan Hur
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ji Hoon Han
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
20
|
New Size‐Expanded Fluorescent Thymine Analogue: Synthesis, Characterization, and Application. Chemistry 2019; 25:9913-9919. [DOI: 10.1002/chem.201900843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Indexed: 01/25/2023]
|
21
|
Martinez-Fernandez L, Gavvala K, Sharma R, Didier P, Richert L, Segarra Martì J, Mori M, Mely Y, Improta R. Excited-State Dynamics of Thienoguanosine, an Isomorphic Highly Fluorescent Analogue of Guanosine. Chemistry 2019; 25:7375-7386. [PMID: 30882930 DOI: 10.1002/chem.201900677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Indexed: 12/27/2022]
Abstract
Thienoguanosine (th G) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, th G exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto-amino tautomers. We herein investigate the photophysics of th G in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5-20.5 and 7-13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of th G, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias, Modúlo13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Javier Segarra Martì
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100, Siena, Italy
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134, Napoli, Italy
| |
Collapse
|
22
|
Zhang Y, Cui Y, An R, Liang X, Li Q, Wang H, Wang H, Fan Y, Dong P, Li J, Cheng K, Wang W, Wang S, Wang G, Xue C, Komiyama M. Topologically Constrained Formation of Stable Z-DNA from Normal Sequence under Physiological Conditions. J Am Chem Soc 2019; 141:7758-7764. [PMID: 30844265 DOI: 10.1021/jacs.8b13855] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Z-DNA, a left-handed duplex, has been shown to form in vivo and regulate expression of the corresponding gene. However, its biological roles have not been satisfactorily understood, mainly because Z-DNA is easily converted to the thermodynamically favorable B-DNA. Here we present a new idea to form stable Z-DNA under normal physiological conditions and achieve detailed analysis on its fundamental features. Simply by mixing two complementary minicircles of single-stranded DNA with no chemical modification, the hybridization spontaneously induces topological constraint which twines one-half of the double-stranded DNA into stable Z-DNA. The formation of Z-conformation with high stability has been proved by using circular dichroism spectroscopy, Z-DNA-specific antibody binding assay, nuclease digestion, etc. Even at a concentration of MgCl2 as low as 0.5 mM, Z-DNA was successfully obtained, avoiding the use of high salt conditions, limited sequences, ancillary additives, or chemical modifications, criteria which have hampered Z-DNA research. The resultant Z-DNA has the potential to be used as a canonical standard sample in Z-DNA research. By using this approach, further developments of Z-DNA science and its applications become highly promising.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yixiao Cui
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ran An
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Xingguo Liang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Qi Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Haiting Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Hao Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Yiqiao Fan
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Ping Dong
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Jing Li
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Kai Cheng
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Weinan Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Sai Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| | - Guoqing Wang
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , No. 1 Wenhai Road , Qingdao , People's Republic of China
| | - Makoto Komiyama
- College of Food Science and Engineering , Ocean University of China , No. 5 Yushan Road , Qingdao , People's Republic of China
| |
Collapse
|
23
|
Qi Q, Taniguchi M, Lindsey JS. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). J Chem Inf Model 2019; 59:652-667. [PMID: 30715870 DOI: 10.1021/acs.jcim.8b00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the photophysical parameters that underpin Förster resonance energy transfer (FRET), perhaps the least explored is the spectral overlap term ( J). While by definition J increases linearly with acceptor molar absorption coefficient (ε(A) in M-1 cm-1), is proportional to wavelength (λ4), and depends on the degree of overlap of the donor fluorescence and acceptor absorption spectra, the question arose as to the value of J for the case of perfect spectral overlap versus that for representative fluorophores with incomplete spectral overlap. Here, Gaussian distributions of absorption and fluorescent spectra have been modeled that encompass varying degrees of overlap, full-width-at-half-maximum (fwhm), and Stokes shift. For ε(A) = 105 M-1 cm-1 and perfect overlap, the J value (in M-1 cm-1 nm4) ranges from 1.15 × 1014 (200 nm) to 7.07 × 1016 (1000 nm), is almost linear with λ4 (average of λabs and λflu), and is nearly independent of fwhm. For visible-region fluorophores with perfectly overlapped Gaussian spectra, the resulting value of J ( JG-0) is ∼0.71 ε(A)λ4 (M-1 cm-1 nm4). The experimental J values for homotransfer, as occurs in light-harvesting antennas, were calculated with spectra from a static database of 60 representative compounds (12 groups, 5 compounds each) and found to range from 4.2 × 1010 ( o-xylene) to 5.3 × 1016 M-1 cm-1 nm4 (a naphthalocyanine). The degree of overlap, defined by the ratio of the experimental J to the model JG-0 for perfectly overlapped spectra, ranges from ∼0.5% (coumarin 151) to 77% (bacteriochlorophyll a). The results provide insights into how a variety of factors affect the resulting J values. The high degree of spectral overlap for (bacterio)chlorophylls prompts brief conjecture concerning the relevance of energy transfer to the question "why chlorophyll".
Collapse
Affiliation(s)
- Qi Qi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Masahiko Taniguchi
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Jonathan S Lindsey
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
24
|
Fisher RS, Nobis D, Füchtbauer AF, Bood M, Grøtli M, Wilhelmsson LM, Jones AC, Magennis SW. Pulse-shaped two-photon excitation of a fluorescent base analogue approaches single-molecule sensitivity. Phys Chem Chem Phys 2018; 20:28487-28498. [PMID: 30412214 DOI: 10.1039/c8cp05496g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluorescent nucleobase analogues (FBAs) have many desirable features in comparison to extrinsic fluorescent labels, but they are yet to find application in ultrasensitive detection. Many of the disadvantages of FBAs arise from their short excitation wavelengths (often in the ultraviolet), making two-photon excitation a potentially attractive approach. Pentacyclic adenine (pA) is a recently developed FBA that has an exceptionally high two-photon brightness. We have studied the two-photon-excited fluorescence properties of pA and how they are affected by incorporation in DNA. We find that pA is more photostable under two-photon excitation than via resonant absorption. When incorporated in an oligonucleotide, pA has a high two-photon cross section and emission quantum yield, varying with sequence context, resulting in the highest reported brightness for such a probe. The use of a two-photon microscope with ultrafast excitation and pulse shaping has allowed the detection of pA-containing oligonucleotides in solution with a limit of detection of ∼5 molecules, demonstrating that practical single-molecule detection of FBAs is now within reach.
Collapse
Affiliation(s)
- Rachel S Fisher
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Han JH, Park S, Hashiya F, Sugiyama H. Approach to the Investigation of Nucleosome Structure by Using the Highly Emissive Nucleobase
th
dG–tC FRET Pair. Chemistry 2018; 24:17091-17095. [DOI: 10.1002/chem.201803382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ji Hoon Han
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606–8502 Japan
| | - Soyoung Park
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606–8502 Japan
| | - Fumitaka Hashiya
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606–8502 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606–8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS)Kyoto University Yoshida-ushinomiyacho Sakyo-ku Kyoto 606–8501 Japan
| |
Collapse
|
26
|
Sholokh M, Sharma R, Grytsyk N, Zaghzi L, Postupalenko VY, Dziuba D, Barthes NPF, Michel BY, Boudier C, Zaporozhets OA, Tor Y, Burger A, Mély Y. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chemistry 2018; 24:13850-13861. [PMID: 29989220 DOI: 10.1002/chem.201802297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/12/2022]
Abstract
Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected. A more benign approach relies on fluorescent nucleobases that can substitute their native counterparts with minimal perturbation, such as the recently developed 2-thienyl-3-hydroxychromone (3HCnt) and thienoguanosine (th G). To demonstrate the potency of 3HCnt and th G in deciphering interconversion mechanisms, we used the conversion of the (-)DNA copy of the HIV-1 primer binding site (-)PBS stem-loop into (+)/(-)PBS duplex, as a model system. When incorporated into the (-)PBS loop, the two probes were found to be highly sensitive to the individual steps both in the absence and the presence of a nucleic acid chaperone, providing the first complete mechanistic description of this critical process in HIV-1 replication. The combination of the two distinct probes appears to be instrumental for characterizing structural transitions of nucleic acids under various stimuli.
Collapse
Affiliation(s)
- Marianna Sholokh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France.,Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Natalia Grytsyk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Lyes Zaghzi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Dmytro Dziuba
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Benoît Y Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Olga A Zaporozhets
- Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
27
|
Bood M, Füchtbauer AF, Wranne MS, Ro JJ, Sarangamath S, El-Sagheer AH, Rupert DLM, Fisher RS, Magennis SW, Jones AC, Höök F, Brown T, Kim BH, Dahlén A, Wilhelmsson LM, Grøtli M. Pentacyclic adenine: a versatile and exceptionally bright fluorescent DNA base analogue. Chem Sci 2018; 9:3494-3502. [PMID: 29780479 PMCID: PMC5934695 DOI: 10.1039/c7sc05448c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
A highly fluorescent, non-perturbing, pentacyclic adenine analog was designed, synthesized, incorporated into DNA and photophysical evaluated.
Emissive base analogs are powerful tools for probing nucleic acids at the molecular level. Herein we describe the development and thorough characterization of pentacyclic adenine (pA), a versatile base analog with exceptional fluorescence properties. When incorporated into DNA, pA pairs selectively with thymine without perturbing the B-form structure and is among the brightest nucleobase analogs reported so far. Together with the recently established base analog acceptor qAnitro, pA allows accurate distance and orientation determination via Förster resonance energy transfer (FRET) measurements. The high brightness at emission wavelengths above 400 nm also makes it suitable for fluorescence microscopy, as demonstrated by imaging of single liposomal constructs coated with cholesterol-anchored pA–dsDNA, using total internal reflection fluorescence microscopy. Finally, pA is also highly promising for two-photon excitation at 780 nm, with a brightness (5.3 GM) that is unprecedented for a base analog.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| | - Anders F Füchtbauer
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Jong Jin Ro
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Afaf H El-Sagheer
- Chemistry Branch , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Déborah L M Rupert
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Rachel S Fisher
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Steven W Magennis
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK
| | - Anita C Jones
- School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JJ , UK
| | - Fredrik Höök
- Division of Biological Physics , Department of Physics , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Tom Brown
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK
| | - Byeang Hyean Kim
- Department of Chemistry , Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , South Korea
| | - Anders Dahlén
- AstraZeneca R&D , Innovative Medicines , Cardiovascular & Metabolic Diseases (CVMD) , Pepparedsleden 1, SE-431 83 Mölndal , Gothenburg , Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden .
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-412 96 Gothenburg , Sweden .
| |
Collapse
|
28
|
Hallé F, Fin A, Rovira AR, Tor Y. Emissive Synthetic Cofactors: Enzymatic Interconversions of tz A Analogues of ATP, NAD + , NADH, NADP + , and NADPH. Angew Chem Int Ed Engl 2018; 57:1087-1090. [PMID: 29228460 PMCID: PMC5771816 DOI: 10.1002/anie.201711935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/11/2022]
Abstract
A series of enzymatic transformations, which generate visibly emissive isofunctional cofactors based on an isothiazolo[4,3-d]pyrimidine analogue of adenosine (tz A), was developed. Nicotinamide adenylyl transferase condenses nicotinamide mononucleotide and tz ATP to yield Ntz AD+ , which can be enzymatically phosphorylated by NAD+ kinase and ATP or tz ATP to the corresponding Ntz ADP+ . The latter can be engaged in NADP-specific coupled enzymatic transformations involving conversion to Ntz ADPH by glucose-6-phosphate dehydrogenase and reoxidation to Ntz ADP+ by glutathione reductase. The Ntz ADP+ /Ntz ADPH cycle can be monitored in real time by fluorescence spectroscopy.
Collapse
Affiliation(s)
- François Hallé
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
29
|
Bood M, Sarangamath S, Wranne MS, Grøtli M, Wilhelmsson LM. Fluorescent nucleobase analogues for base-base FRET in nucleic acids: synthesis, photophysics and applications. Beilstein J Org Chem 2018; 14:114-129. [PMID: 29441135 PMCID: PMC5789401 DOI: 10.3762/bjoc.14.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base–base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and enable detailed investigations of structure and dynamics of nucleic acid containing systems. The first base–base FRET pair, tCO–tCnitro, has recently been complemented with among others the adenine analogue FRET pair, qAN1–qAnitro, increasing the flexibility of the methodology. Here we present the design, synthesis, photophysical characterization and use of such base analogues. They enable a higher control of the FRET orientation factor, κ2, have a different distance window of opportunity than external fluorophores, and, thus, have the potential to facilitate better structure resolution. Netropsin DNA binding and the B-to-Z-DNA transition are examples of structure investigations that recently have been performed using base–base FRET and that are described here. Base–base FRET has been around for less than a decade, only in 2017 expanded beyond one FRET pair, and represents a highly promising structure and dynamics methodology for the field of nucleic acids. Here we bring up its advantages as well as disadvantages and touch upon potential future applications.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Sangamesh Sarangamath
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Moa S Wranne
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
30
|
Emissive Synthetic Cofactors: Enzymatic Interconversions of tz
A Analogues of ATP, NAD+
, NADH, NADP+
, and NADPH. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|