1
|
Nisar A, Gul E, Rahman G, Wu Y, Bokhari TH, Rahman AU, Zafar A, Rana Z, Shah A, Hussain S, Maaz K, Javaid S, Karim S, Sun H, Ahmad M, Xiang G. Amphiphilic Polyoxometalate-CNTs Nanohybrid as Highly Efficient Enzyme-free Electrocatalyst for H2O2 Sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj03112d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid nanomaterials are emerging as a potential platform for the efficient detection of biomolecules, thus, the rational design of such materials has been widely explored. Polyoxometalates (POM) nanoclusters can serve...
Collapse
|
2
|
Xi E, Zhao Y, Xie Y, Gao N, Bian Z, Zhu G. Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. J Phys Chem Lett 2021; 12:11050-11060. [PMID: 34747622 DOI: 10.1021/acs.jpclett.1c03209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous aromatic frameworks (PAFs) were first reported in 2009 and have quickly attracted much attention because of their exceptionally ultrahigh specific surface area (5800 m2·g-1). Uniquely, PAFs are constructed from carbon-carbon-bond-linked aromatic-based building units, which render PAFs extremely stable in various environments. At present, PAFs have been applied in many fields, such as adsorption, catalysis, ion exchange, electrochemistry, and so on. However, for such a unique material, its application in the biological fields is still rarely explored. Therefore, this Perspective introduces the reported application of PAFs in biological fields, for instance, diagnosis and treatment of diseases, artificial enzymes, drug delivery, and extraction of bioactive substances. Major challenges and opportunities for future research on PAFs in biology and biomedicine are identified in diagnostic platforms, novel drug carriers/antidotes, and novel artificial enzymes.
Collapse
Affiliation(s)
- Enpeng Xi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yue Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yiling Xie
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Nan Gao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
3
|
Yuan Y, Yang Y, Zhu G. Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS CENTRAL SCIENCE 2020; 6:1082-1094. [PMID: 32724843 PMCID: PMC7379099 DOI: 10.1021/acscentsci.0c00311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 05/17/2023]
Abstract
Porous aromatic frameworks (PAFs) are an important class of porous materials that are well-known for their ultralarge surface areas and superb stabilities. Basically, PAF solids are constructed from periodically arranged phenyl fragments connected via C-C bonds (generally), which provide vast accessible surfaces that can be modified with functional groups and intrinsic pathways for rapid mass transfer. Molecular imprinting technology (MIT) is an effective method for producing binding sites with a specific geometry and size that complement a template object. This review focuses on the integration of MIT into PAF structures via state-of-the-art coupling chemistry to expand the application of porous materials in the fields of metal ion extraction (including the nuclear element uranium) and selective catalysis. Additionally, a concise outlook on the rational construction of molecularly imprinted porous aromatic frameworks is discussed in terms of developing next-generation porous materials for broader applications.
Collapse
|
4
|
Abstract
Porous aromatic frameworks (PAFs) represent an important category of porous solids. PAFs possess rigid frameworks and exceptionally high surface areas, and, uniquely, they are constructed from carbon-carbon-bond-linked aromatic-based building units. Various functionalities can either originate from the intrinsic chemistry of their building units or are achieved by postmodification of the aromatic motifs using established reactions. Specially, the strong carbon-carbon bonding renders PAFs stable under harsh chemical treatments. Therefore, PAFs exhibit specificity in their chemistry and functionalities compared with conventional porous materials such as zeolites and metal organic frameworks. The unique features of PAFs render them being tolerant of severe environments and readily functionalized by harsh chemical treatments. The research field of PAFs has experienced rapid expansion over the past decade, and it is necessary to provide a comprehensive guide to the essential development of the field at this stage. Regarding research into PAFs, the synthesis, functionalization, and applications are the three most important topics. In this thematic review, the three topics are comprehensively explained and aptly exemplified to shed light on developments in the field. Current questions and a perspective outlook will be summarized.
Collapse
Affiliation(s)
- Yuyang Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
5
|
An WK, Zheng SJ, Du YN, Ding SY, Li ZJ, Jiang S, Qin Y, Liu X, Wei PF, Cao ZQ, Song M, Pan Z. Thiophene-embedded conjugated microporous polymers for photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
“Bottom-up” embedding of thiophene derivatives into CMPs for highly efficient heterogeneous photocatalysis is reported.
Collapse
|
6
|
Xiao Z, Huang X, Zhao K, Song Q, Guo R, Zhang X, Zhou S, Kong D, Wagner M, Müllen K, Zhi L. Band Structure Engineering of Schiff-Base Microporous Organic Polymers for Enhanced Visible-Light Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900244. [PMID: 31259465 DOI: 10.1002/smll.201900244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Schiff-base networks (SBNs), as typical examples of nitrogen-doped microporous organic polymers (MOPs), exhibit promising application prospects owing to their stable properties and tunable chemical structures. However, their band structure engineering, which plays a key role in optical properties, remains elusive due to the complicated mechanisms behind energy level adjustment. In this work, a series of SBNs are fabricated by tailoring the ratio of p-phthalaldehyde and o-phthalaldehyde in the Schiff-base chemistry reaction with melamine, resulting in a straightforward as well as continuous tuning of their band gaps ranging from 4.4 to 1.4 eV. Consequently, SBNs can be successfully used as photocatalysts with excellent visible-light photocatalytic activity even under metal-free conditions. Significantly, electronic structures of SBNs are systematically studied by electrochemical and spectroscopic characterizations, demonstrating that the enhanced performance is ascribed to proper band structure and improved charge separation ability. More importantly, in combination with theoretical calculations, the band structure regulation mechanism and band structure-photocatalytic property relationship are deeply disclosed. The results obtained from this study will not only furnish SBN materials with excellent performance for solar energy conversion, but also open up elegant protocols for the molecular engineering of MOPs with desirable band structures.
Collapse
Affiliation(s)
- Zhichang Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaoxiong Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Zhao
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, QLD, 4222, Australia
| | - Qi Song
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ruiying Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinghao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanke Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Jiang L, Wang P, Li M, Zhang P, Li J, Liu J, Ma Y, Ren H, Zhu G. Construction of a Stable Crystalline Polyimide Porous Organic Framework for C
2
H
2
/C
2
H
4
and CO
2
/N
2
Separation. Chemistry 2019; 25:9045-9051. [DOI: 10.1002/chem.201900857] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Lingchang Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Pengyuan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Meiping Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Panpan Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Jialu Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Jia Liu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Yanhang Ma
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Guangshan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
- Key Laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|