1
|
Liang P, de Aragão EVF, Giani L, Mancini L, Pannacci G, Marchione D, Vanuzzo G, Faginas-Lago N, Rosi M, Skouteris D, Casavecchia P, Balucani N. OH( 2Π) + C 2H 4 Reaction: A Combined Crossed Molecular Beam and Theoretical Study. J Phys Chem A 2023. [PMID: 37207281 DOI: 10.1021/acs.jpca.2c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The reaction between the ground-state hydroxyl radical, OH(2Π), and ethylene, C2H4, has been investigated under single-collision conditions by the crossed molecular beam scattering technique with mass-spectrometric detection and time-of-flight analysis at the collision energy of 50.4 kJ/mol. Electronic structure calculations of the underlying potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of product branching fractions on the derived PES for the addition pathway have been performed. The theoretical results indicate a temperature-dependent competition between the anti-/syn-CH2CHOH (vinyl alcohol) + H, CH3CHO (acetaldehyde) + H, and H2CO (formaldehyde) + CH3 product channels. The yield of the H-abstraction channel could not be quantified with the employed methods. The RRKM results predict that under our experimental conditions, the anti- and syn-CH2CHOH + H product channels account for 38% (in similar amounts) of the addition mechanism yield, the H2CO + CH3 channel for ∼58%, while the CH3CHO + H channel is formed in negligible amount (<4%). The implications for combustion and astrochemical environments are discussed.
Collapse
Affiliation(s)
- Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Emília Valença Ferreira de Aragão
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Lisa Giani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Université Grenoble Alpes, 621 Av. Centrale, Saint-Martin-d'Hères 38400, France
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Noelia Faginas-Lago
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile Ed Ambientale, Università Degli Studi di Perugia, Perugia 06125, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| |
Collapse
|
2
|
Liang P, de Aragão EVF, Pannacci G, Vanuzzo G, Giustini A, Marchione D, Recio P, Ferlin F, Stranges D, Lago NF, Rosi M, Casavecchia P, Balucani N. Reactions O( 3P, 1D) + HCCCN(X 1Σ +) (Cyanoacetylene): Crossed-Beam and Theoretical Studies and Implications for the Chemistry of Extraterrestrial Environments. J Phys Chem A 2023; 127:685-703. [PMID: 36638186 PMCID: PMC9884085 DOI: 10.1021/acs.jpca.2c07708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyanoacetylene (HCCCN), the first member of the cyanopolyyne family (HCnN, where n = 3, 5, 7, ...), is of particular interest in astrochemistry being ubiquitous in space (molecular clouds, solar-type protostars, protoplanetary disks, circumstellar envelopes, and external galaxies) and also relatively abundant. It is also abundant in the upper atmosphere of Titan and comets. Since oxygen is the third most abundant element in space, after hydrogen and helium, the reaction O + HCCCN can be of relevance in the chemistry of extraterrestrial environments. Despite that, scarce information exists not only on the reactions of oxygen atoms with cyanoacetylene but with nitriles in general. Here, we report on a combined experimental and theoretical investigation of the reactions of cyanoacetylene with both ground 3P and excited 1D atomic oxygen and provide detailed information on the primary reaction products, their branching fractions (BFs), and the overall reaction mechanisms. More specifically, the reactions of O(3P, 1D) with HCCCN(X1Σ+) have been investigated under single-collision conditions by the crossed molecular beams scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy, Ec, of 31.1 kJ/mol. From product angular and time-of-flight distributions, we have identified the primary reaction products and determined their branching fractions (BFs). Theoretical calculations of the relevant triplet and singlet potential energy surfaces (PESs) were performed to assist the interpretation of the experimental results and clarify the reaction mechanism. Adiabatic statistical calculations of product BFs for the decomposition of the main triplet and singlet intermediates have also been carried out. Merging together the experimental and theoretical results, we conclude that the O(3P) reaction is characterized by a minor adiabatic channel leading to OCCCN (cyanoketyl) + H (experimental BF = 0.10 ± 0.05), while the dominant channel (BF = 0.90 ± 0.05) occurs via intersystem crossing to the underlying singlet PES and leads to formation of 1HCCN (cyanomethylene) + CO. The O(1D) reaction is characterized by the same two channels, with the relative CO/H yield being slightly larger. Considering the recorded reactive signal and the calculated entrance barrier, we estimate that the rate coefficient for reaction O(3P) + HC3N at 300 K is in the 10-12 cm3 molec-1 s-1 range. Our results are expected to be useful to improve astrochemical and photochemical models. In addition, they are also relevant in combustion chemistry, because the thermal decomposition of pyrrolic and pyridinic structures present in fuel-bound nitrogen generates many nitrogen-bearing compounds, including cyanoacetylene.
Collapse
Affiliation(s)
- Pengxiao Liang
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Emilia V. F. de Aragão
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy,Master-Tec
srl, Via Sicilia 41, Perugia 06128, Italy
| | - Giacomo Pannacci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Gianmarco Vanuzzo
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Andrea Giustini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Demian Marchione
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Pedro Recio
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Francesco Ferlin
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Domenico Stranges
- Dipartimento
di Chimica, Università degli Studi
La Sapienza, Roma 00185, Italy
| | - Noelia Faginas Lago
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, Perugia 06123, Italy
| | - Piergiorgio Casavecchia
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy,E-mail:
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Perugia 06123, Italy,E-mail:
| |
Collapse
|
3
|
Salvitti C, Pepi F, Troiani A, Rosi M, de Petris G. The Peroxymonocarbonate Anion HCO 4- as an Effective Oxidant in the Gas Phase: A Mass Spectrometric and Theoretical Study on the Reaction with SO 2. Molecules 2022; 28:132. [PMID: 36615325 PMCID: PMC9822475 DOI: 10.3390/molecules28010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The peroxymonocarbonate anion, HCO4-, the covalent adduct between the carbon dioxide and hydrogen peroxide anion, effectively reacts with SO2 in the gas phase following three oxidative routes. Mass spectrometric and electronic structure calculations show that sulphur dioxide is oxidised through a common intermediate to the hydrogen sulphate anion, sulphur trioxide, and sulphur trioxide anion as primary products through formal HO2-, oxygen atom, and oxygen ion transfers. The hydrogen sulphite anion is also formed as a secondary product from the oxygen atom transfer path. The uncommon nucleophilic behaviour of HCO4- is disclosed by the Lewis acidic properties of SO2, an amphiphilic molecule that forms intermediates with characteristic and diagnostic geometries with peroxymonocarbonate.
Collapse
Affiliation(s)
- Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico Pepi
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile ed Ambientale, University of Perugia, Via Duranti 93, 06125 Perugia, Italy
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Regioselective Bond-Forming and Hydrolysis Reactions of Doubly Charged Vanadium Oxide Anions in the Gas Phase. REACTIONS 2022. [DOI: 10.3390/reactions3020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The gas-phase reactivity of vanadium-containing dianions, NaV3O92− and its hydrated form H2NaV3O102−, were probed towards sulphur dioxide at room temperature by ion-molecule reaction (IMR) experiments in the collision cell of an ion trap mass spectrometer. The sequential addition of two SO2 molecules to the NaV3O92− dianion leads to the breakage of the stable V3O9 backbone, resulting in a charge separation process with the formation of new V-O and S-O bonds. On the contrary, the H2NaV3O102− hydroxide species reacts with SO2, promoting regioselective hydrolysis and bond-forming processes, the latter similar to that observed for the NaV3O92− reactant anion. Kinetic analysis shows that these reactions are fast and efficient with rate constants of the 10−9 (±30) cm3 s−1 molecule−1 order of magnitude.
Collapse
|
5
|
Semiempirical Potential in Kinetics Calculations on the HC3N + CN Reaction. Molecules 2022; 27:molecules27072297. [PMID: 35408696 PMCID: PMC9000235 DOI: 10.3390/molecules27072297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.
Collapse
|
6
|
Intracluster Sulphur Dioxide Oxidation by Sodium Chlorite Anions: A Mass Spectrometric Study. Molecules 2021; 26:molecules26237114. [PMID: 34885696 PMCID: PMC8659277 DOI: 10.3390/molecules26237114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
The reactivity of [NaL·ClO2]− cluster anions (L = ClOx−; x = 0–3) with sulphur dioxide has been investigated in the gas phase by ion–molecule reaction experiments (IMR) performed in an in-house modified Ion Trap mass spectrometer (IT-MS). The kinetic analysis revealed that SO2 is efficiently oxidised by oxygen-atom (OAT), oxygen-ion (OIT) and double oxygen transfer (DOT) reactions. The main difference from the previously investigated free reactive ClO2− is the occurrence of intracluster OIT and DOT processes, which are mediated by the different ligands of the chlorite anion. This gas-phase study highlights the importance of studying the intrinsic properties of simple reacting species, with the aim of elucidating the elementary steps of complex processes occurring in solution, such as the oxidation of sulphur dioxide.
Collapse
|
7
|
Salvitti C, Rosi M, Pepi F, Troiani A, de Petris G. Reactivity of transition metal dioxide anions MO2− (M = Co, Ni, Cu, Zn) with sulfur dioxide in the gas phase: An experimental and theoretical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Falcinelli S, Rosi M. Production and Characterization of Molecular Dications: Experimental and Theoretical Efforts. Molecules 2020; 25:molecules25184157. [PMID: 32932839 PMCID: PMC7571021 DOI: 10.3390/molecules25184157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular dications are doubly charged cations of importance in flames, plasma chemistry and physics and in the chemistry of the upper atmosphere of Planets. Furthermore, they are exotic species able to store a considerable amount of energy at a molecular level. This high energy content of several eV can be easily released as translational energy of the two fragment monocations generated by their Coulomb explosion. For such a reason, they were proposed as a new kind of alternative propellant. The present topic review paper reports on an overview of the main contributions made by the authors’ research groups in the generation and characterization of simple molecular dications during the last 40 years of coupling experimental and theoretical efforts.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- Correspondence: (S.F.); (M.R.); Tel.: +39-075-585-3862 (S.F.); +39-075-585-3858 (M.R.)
| | - Marzio Rosi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- SCITEC, CNR, Via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence: (S.F.); (M.R.); Tel.: +39-075-585-3862 (S.F.); +39-075-585-3858 (M.R.)
| |
Collapse
|
9
|
Troiani A, Salvitti C, de Petris G. Gas-Phase Reactivity of Carbonate Ions with Sulfur Dioxide: an Experimental Study of Clusters Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1964-1972. [PMID: 31286448 DOI: 10.1007/s13361-019-02228-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The reactivity of carbonate cluster ions with sulfur dioxide has been investigated in the gas phase by mass spectrometric techniques. SO2 promotes the displacement of carbon dioxide from carbonate clusters through a stepwise mechanism, leading to the quantitative conversion of the carbonate aggregates into the corresponding sulfite cluster ions. The kinetic study of the reactions of positive, negative, singly, and doubly charged ions reveals very fast and efficient processes for all the carbonate ions.
Collapse
Affiliation(s)
- Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Rosi M, Skouteris D, Balucani N, Nappi C, Faginas Lago N, Pacifici L, Falcinelli S, Stranges D. An Experimental and Theoretical Investigation of 1-Butanol Pyrolysis. Front Chem 2019; 7:326. [PMID: 31139618 PMCID: PMC6527765 DOI: 10.3389/fchem.2019.00326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022] Open
Abstract
Bioalcohols are a promising family of biofuels. Among them, 1-butanol has a strong potential as a substitute for petrol. In this manuscript, we report on a theoretical and experimental characterization of 1-butanol thermal decomposition, a very important process in the 1-butanol combustion at high temperatures. Advantage has been taken of a flash pyrolysis experimental set-up with mass spectrometric detection, in which the brief residence time of the pyrolyzing mixture inside a short, resistively heated SiC tube allows the identification of the primary products of the decomposing species, limiting secondary processes. Dedicated electronic structure calculations of the relevant potential energy surface have also been performed and RRKM estimates of the rate coefficients and product branching ratios up to 2,000 K are provided. Both electronic structure and RRKM calculations are in line with previous determinations. According to the present study, the H2O elimination channel leading to 1-butene is more important than previously believed. In addition to that, we provide experimental evidence that butanal formation by H2 elimination is not a primary decomposition route. Finally, we have experimental evidence of a small yield of the CH3 elimination channel.
Collapse
Affiliation(s)
- Marzio Rosi
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | | | - Nadia Balucani
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Caterina Nappi
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Noelia Faginas Lago
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Leonardo Pacifici
- Master-Up, Perugia, Italy.,Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Domenico Stranges
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
11
|
Troiani A, Rosi M, Garzoli S, Salvitti C, de Petris G. Sulphur dioxide cooperation in hydrolysis reactions of vanadium oxide and hydroxide cluster dianions. NEW J CHEM 2018. [DOI: 10.1039/c7nj05011a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gas-phase hydrolysis takes place due to the synergistic action of SO2 and vanadium-containing dianions that succeeds in tightening hydrogen bonds.
Collapse
Affiliation(s)
- Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco
- “Sapienza” University of Rome
- 00185 Roma
- Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile e Ambientale
- University of Perugia and CNR-ISTM
- 06125 Perugia
- Italy
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco
- “Sapienza” University of Rome
- 00185 Roma
- Italy
| | - Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco
- “Sapienza” University of Rome
- 00185 Roma
- Italy
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del Farmaco
- “Sapienza” University of Rome
- 00185 Roma
- Italy
| |
Collapse
|