1
|
Ketkov SY, Tzeng SY, Rychagova EA, Lukoyanov AN, Tzeng WB. Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy. Phys Chem Chem Phys 2024; 26:1046-1056. [PMID: 38095021 DOI: 10.1039/d3cp05120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Metallocenes represent archetypical organometallic compounds playing key roles in various fields of fundamental and applied chemistry. Many of their unique properties arise from low ionization energies (IE) which can be tuned by introducing substituents into the rings. Here we report the first mass-analyzed threshold ionization (MATI) spectrum of a methylmetallocene, (Cp')(Cp)Co (Cp' = η5-C5H4Me, Cp = η5-C5H5). The presence of a single Me group allows us to study the "pure" effect of methylation without the mutual influence of substituents. The MATI technique provides an extremely high accuracy in determining the adiabatic IE of (Cp')(Cp)Co which equals 5.2097(6) eV. The effect of a Me group on the IE of cobaltocene appears to be 36% stronger than that in bis(η6-benzene)chromium. The MATI spectrum of (Cp')(Cp)Co shows a rich vibronic structure from which vibrational frequencies of the free ion are determined. This information provides a solid basis for testing the quality of quantum chemical calculations. Various levels of the DFT and coupled cluster computations are used to describe the structural and electronic transformations accompanying the detachment of an elctron from (Cp')(Cp)Co. New aspects of the methyl substituent influence on the potential energy surfaces, as well as on the inhomogeneous changes in charge density and electrostatic potential caused by ionization, are discussed.
Collapse
Affiliation(s)
- Sergey Yu Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Elena A Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Anton N Lukoyanov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS, 49 Tropinin St., 603950 Nizhny Novgorod, Russian Federation.
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Li S, Zhao Y, Jiao Y, Zhao J, Li C, Jia S. Vibronic and Cationic Features of 2-Fluorobenzonitrile and 3-Fluorobenzonitrile Studied by REMPI and MATI Spectroscopy and Franck-Condon Simulations. Molecules 2023; 28:4702. [PMID: 37375257 DOI: 10.3390/molecules28124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Fluorinated organic compounds have superior physicochemical properties than general organic compounds due to the strong C-F single bond; they are widely used in medicine, biology, pesticides, and materials science. In order to gain a deeper understanding of the physicochemical properties of fluorinated organic compounds, fluorinated aromatic compounds have been investigated by various spectroscopic techniques. 2-fluorobenzonitrile and 3-fluorobenzonitrile are important fine chemical intermediates and their excited state S1 and cationic ground state D0 vibrational features remain unknown. In this paper, we used two-color resonance two photon ionization (2-color REMPI) and mass analyzed threshold ionization (MATI) spectroscopy to study S1 and D0 state vibrational features of 2-fluorobenzonitrile and 3-fluorobenzonitrile. The precise excitation energy (band origin) and adiabatic ionization energy were determined to be 36,028 ± 2 cm-1 and 78,650 ± 5 cm-1 for 2-fluorobenzonitrile and 35,989 ± 2 cm-1 and 78,873 ± 5 cm-1 for 3-fluorobenzonitrile, respectively. The density functional theory (DFT) at the levels of RB3LYP/aug-cc-pvtz, TD-B3LYP/aug-cc-pvtz, and UB3LYP/aug-cc-pvtz were used to calculate the stable structures and vibrational frequencies for the ground state S0, excited state S1, and cationic ground state D0, respectively. Franck-Condon spectral simulations for transitions of S1 ← S0 and D0 ← S1 were performed based on the above DFT calculations. The theoretical and experimental results were in good agreement. The observed vibrational features in S1 and D0 states were assigned according to the simulated spectra and the comparison with structurally similar molecules. Several experimental findings and molecular features were discussed in detail.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Yan Zhao
- Department of Physics and Electronics Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yuechun Jiao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jianming Zhao
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Changyong Li
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Ketkov S, Tzeng SY, Rychagova E, Tzeng WB. Ionization of Decamethylmanganocene: Insights from the DFT-Assisted Laser Spectroscopy. Molecules 2022; 27:molecules27196226. [PMID: 36234763 PMCID: PMC9573365 DOI: 10.3390/molecules27196226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Metallocenes represent one of the most important classes of organometallics with wide prospects for practical use in various fields of chemistry, materials science, molecular electronics, and biomedicine. Many applications of these metal complexes are based on their ability to form molecular ions. We report the first results concerning the changes in the molecular and electronic structure of decamethylmanganocene, Cp*2Mn, upon ionization provided by the high-resolution mass-analyzed threshold ionization (MATI) spectroscopy supported by DFT calculations. The precise ionization energy of Cp*2Mn is determined as 5.349 ± 0.001 eV. The DFT modeling of the MATI spectrum shows that the main structural deformations accompanying the detachment of an electron consist in the elongation of the Mn-C bonds and a change in the Me out-of-plane bending angles. Surprisingly, the DFT calculations predict that most of the reduction in electron density (ED) upon ionization is associated with the hydrogen atoms of the substituents, despite the metal character of the ionized orbital. However, the ED difference isosurfaces reveal a complex mechanism of the charge redistribution involving also the carbon atoms of the molecule.
Collapse
Affiliation(s)
- Sergey Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603950 Nizhny Novgorod, Russia
- Correspondence: (S.K.); (W.-B.T.)
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Elena Rychagova
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603950 Nizhny Novgorod, Russia
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Correspondence: (S.K.); (W.-B.T.)
| |
Collapse
|
4
|
Ketkov SY, Tzeng SY, Rychagova EA, Markin GV, Makarov SG, Tzeng WB. Laser spectroscopic and computational insights into unexpected structural behaviours of sandwich complexes upon ionization. Dalton Trans 2021; 50:10729-10736. [PMID: 34231616 DOI: 10.1039/d1dt01887f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal sandwich complexes play key roles in various fields such as fundamental and applied chemistry; many of their unique properties arise from their ability to form stable or reactive ions. The first mass-analyzed threshold ionization (MATI) spectra of mixed sandwich compounds, (Ch)(Cp)Cr and (Cot)(Cp)Ti (Ch = η7-C7H7, Cp = η5-C5H5, Cot = η8-C8H8), presented in this work provide an extremely accurate description of the electron detachment. The ionization energies of the neutrals and stabilization energies of the metal-ligand interactions upon ionization are derived from the MATI data with an accuracy of 0.0006 eV. In combination with DFT calculations, laser threshold ionization spectroscopy reveals surprisingly different structural variations accompanying the detachment of the non-bonding dz2 electron from the sandwich molecules. The geometry of (Ch)(Cp)Cr remains practically unchanged while the ionization of (Cot)(Cp)Ti causes a noticeable shortening of the inter-ring distance, similar to that resulting from the ionization of a typical antibonding orbital. Electron density analysis throws light on the nature of these amazing effects.
Collapse
Affiliation(s)
- Sergey Yu Ketkov
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617 Taiwan.
| | - Elena A Rychagova
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Gennady V Markin
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Sergei G Makarov
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617 Taiwan.
| |
Collapse
|
5
|
Ketkov SY, Rychagova EA, Zhigulin GY, Tzeng SY, Tzeng WB. Quantum-Chemical Modeling of the Mass-analyzed Threshold Ionization Spectra of Ferrocene and Cobaltocene. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920060077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Ketkov S. Substituent effects on the electronic structures of sandwich compounds: new understandings provided by DFT-assisted laser ionization spectroscopy of bisarene complexes. Dalton Trans 2020; 49:569-577. [PMID: 31903470 DOI: 10.1039/c9dt04440j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances on substituent effects in transition metal bisarene complexes studied with high-resolution threshold ionization spectroscopy are reviewed to demonstrate new aspects of the ligand influence on electronic structures of sandwich molecules. Unprecedented accuracy in the determination of ionization energies provided by the laser techniques makes it possible to reveal and describe quantitatively such fine phenomena as isotope effects, the mutual substituent influence or variations of substituent effects on replacing the central metal atom with its Group analogues. In combination with DFT calculations, laser ionization spectroscopy unveils mechanisms of the ligand influence on unique redox properties of sandwich complexes which are of key importance for their practical use.
Collapse
Affiliation(s)
- Sergey Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinin St. 49, GSP-445, Nizhny Novgorod 603950, Russian Federation.
| |
Collapse
|
7
|
Ketkov S, Rychagova E. Electronic excited states of mixed sandwich complexes, (η7-C7H7)(η5-C5H5)M (M = V, Cr): Investigation with time-dependent density functional theory. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Ketkov SY, Tzeng SY, Rychagova EA, Kalakutskaya LV, Fuss M, Braunschweig H, Tzeng WB. Rydberg state mediated multiphoton ionization of (η 7-C 7H 7)(η 5-C 5H 5)Cr: DFT-supported experimental insights into the molecular and electronic structures of excited sandwich complexes. Phys Chem Chem Phys 2019; 21:9665-9671. [DOI: 10.1039/c9cp00888h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first REMPI/DFT study of a mixed sandwich complex reveals fine ligand effects on structural transformations accompanying electronic excitation.
Collapse
Affiliation(s)
- Sergey Yu. Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry RAS
- NIzhny Novgorod 603950
- Russian Federation
| | - Sheng Yuan Tzeng
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Elena A. Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry RAS
- NIzhny Novgorod 603950
- Russian Federation
| | - Lyubov’ V. Kalakutskaya
- G. A. Razuvaev Institute of Organometallic Chemistry RAS
- NIzhny Novgorod 603950
- Russian Federation
| | - Marco Fuss
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| |
Collapse
|