1
|
Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Photoinduced Intermolecular Radical Hydroalkylation of Olefins via Ligated Boryl Radicals-Mediated Halogen Atom Transfer. Org Lett 2024; 26:5839-5843. [PMID: 38950385 PMCID: PMC11250028 DOI: 10.1021/acs.orglett.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Light-mediated Halogen-Atom Transfer (XAT) has become a significant methodology in contemporary synthesis. Unlike α-aminoalkyl and silyl radicals, ligated boryl radicals (LBRs) have not been extensively explored as halogen atom abstractors. In this study, we introduce NHC-ligated boranes as optimal radical chain carriers for the intermolecular reductive radical hydroalkylation and hydroarylation of electron-deficient olefins by using direct UV-A light irradiation. DFT analysis allowed us to rationalize the critical role of the NHC ligand in facilitating efficient chain propagation.
Collapse
Affiliation(s)
- Ting Wan
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- The
Research Center of Chiral Drugs, Innovation Research Institute of
Traditional Chinese Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Łukasz W. Ciszewski
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, 27100 Pavia, Italy
| | - Luca Capaldo
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- SynCat
Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Guo X, Lin Z. Boryls, their compounds and reactivity: a structure and bonding perspective. Chem Sci 2024; 15:3060-3070. [PMID: 38425516 PMCID: PMC10901493 DOI: 10.1039/d3sc06864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Boryls and their compounds are important due to their diverse range of applications in the fields of materials science and catalysis. They are an integral part of boron chemistry, which has attracted tremendous research interest over the past few decades. In this perspective, we provide an in-depth analysis of the reaction chemistry of boryl compounds from a structure and bonding perspective. We discuss the reactivity of boryls in various transition metal complexes and diborane(4) compounds towards different substrate molecules, with a focus on their nucleophilic and electrophilic properties in various reaction processes. Additionally, we briefly discuss the reactivity of boryl radicals. Our analysis sheds new light on the unique properties of boryls and their potential for catalytic applications.
Collapse
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
3
|
Liu X, Lu M, Guo X, Xu H, Xu J. Visible-Light Enabled Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acid Derivatives via C-O Bond Cleavage. Chemistry 2023; 29:e202302041. [PMID: 37507840 DOI: 10.1002/chem.202302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
A novel visible-light photoredox strategy is reported for the efficient dehydroxylative alkylation of a wide array of α-hydroxy carboxylic acid derivatives using diaryl boron radical. The reaction features readily accessible starting materials, broad substrate scope with excellent functionality tolerance. Preliminary mechanistic studies reveal that the spin-center shift process is responsible for the C-O bond activation, which is promoted by the diaryl boron radical generated from bench-stable and commercially available tetraphenyl borate (NaBPh4 ).
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Food and Biological Engineering, Anhui Province Key Laboratory of, Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Minming Lu
- School of Food and Biological Engineering, Anhui Province Key Laboratory of, Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xiangli Guo
- School of Food and Biological Engineering, Anhui Province Key Laboratory of, Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Huajian Xu
- School of Food and Biological Engineering, Anhui Province Key Laboratory of, Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Anhui Province Key Laboratory of, Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
4
|
Wang H, Zhao JF, Zhu XL, Tian QQ, He W. Photoinduced Borylation of the Inert C(sp 3)-O Bond of Alkyl Heteroaryl Ethers. Org Lett 2023; 25:6485-6489. [PMID: 37668383 DOI: 10.1021/acs.orglett.3c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A photoinduced reductive Calkyl-O borylation of alkyl heteroaryl ethers with very negative reduction potential in the presence of 4-dimethylaminopyridine (DMAP) and bis(catecholato)diborane(B2cat2) was developed. Despite the high reducing power, various substrates with liable functional groups were well-tolerated as well as ethers derived from natural products and medicinal-relevant compounds. Mechanistic investigation implied that an intra-single electron transfer process in an electron donor-acceptor complex formed from ethers with the adduct of B2cat2 and DMAP should be involved.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jing-Feng Zhao
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Xing-Li Zhu
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
5
|
Zhao Q, Li B, Zhou X, Wang Z, Zhang FL, Li Y, Zhou X, Fu Y, Wang YF. Boryl Radicals Enabled a Three-Step Sequence to Assemble All-Carbon Quaternary Centers from Activated Trichloromethyl Groups. J Am Chem Soc 2022; 144:15275-15285. [PMID: 35950969 DOI: 10.1021/jacs.2c05798] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of diversely substituted all-carbon quaternary centers has been a longstanding challenge in organic synthesis. Methods that add three alkyl substituents to a simple C(sp3) atom rely heavily on lengthy multiple processes, which usually involve several preactivation steps. Here, we describe a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which are selectively functionalized to introduce three alkyl chains. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug molecules, whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms.
Collapse
Affiliation(s)
- Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhao Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Peng TY, Xu ZY, Zhang FL, Li B, Xu WP, Fu Y, Wang YF. Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acid Derivatives via a Spin-Center Shift. Angew Chem Int Ed Engl 2022; 61:e202201329. [PMID: 35388555 DOI: 10.1002/anie.202201329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/05/2022]
Abstract
A strategically distinct dehydroxylative alkylation reaction of α-hydroxy carboxylic acid derivatives with alkenes is developed. The reaction starts with the attack of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom, followed by a spin-center shift (SCS) to trigger the C-O bond scission. The resulting α-carbonyl radicals couple with a wide range of alkenes to furnish various alkylated products. This strategy allows for the efficient conversion of a wide array of α-hydroxy amides and esters derived from several biomass molecules and natural products to value-added compounds. Experimental and computational studies verified the reaction mechanism.
Collapse
Affiliation(s)
- Tian-Yu Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zhe-Yuan Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Wen-Ping Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Park C, Lee S. One‐pot
sulfa‐Michael
addition reactions of disulfides using a pyridine‐borane complex under blue light irradiation. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Changhee Park
- Department of Physics and Chemistry DGIST Daegu South Korea
| | - Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu South Korea
- Center for Basic Science DGIST Daegu South Korea
| |
Collapse
|
8
|
Peng TY, Xu ZY, Zhang FL, Li B, Xu WP, Fu Y, Wang YF. Dehydroxylative Alkylation of α‐Hydroxy Carboxylic Acids Derivatives via Spin‐center Shift. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian-Yu Peng
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhe-Yuan Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Feng-Lian Zhang
- University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Wen-Ping Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yao Fu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yi-Feng Wang
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
9
|
Ye T, Zhang FL, Xia HM, Zhou X, Yu ZX, Wang YF. Stereoselective hydrogen atom transfer to acyclic radicals: a switch enabling diastereodivergent borylative radical cascades. Nat Commun 2022; 13:426. [PMID: 35058459 PMCID: PMC8776760 DOI: 10.1038/s41467-022-28071-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Radical cascade reactions are powerful tools to construct structurally complex molecules. However, the stereochemical control of acyclic radical intermediates remains a persistent challenge, due to the low differentiation between the two faces of these species. This hurdle further makes stereodivergent synthesis rather more difficult to be accomplished, in particular for intermediates resulted from complex cascades. Here we report an efficient strategy for stereoselective hydrogen atom transfer (HAT) to acyclic carbon radicals, which are generated via N-heterocyclic carbene (NHC)-boryl radicals triggered addition-translocation-cyclization cascades. A synergistic control by the NHC subunit and a thiol catalyst has proved effective for one facial HAT, while a ZnI2-chelation protocol allows for the preferential reaction to the opposite face. Such a stereoselectivity switch enables diastereodivergent construction of heterocycles tethering a boron-substituted stereocenter. Mechanistic studies suggest two complementary ways to tune HAT diastereoselectivity. The stereospecific conversions of the resulting boron-handled products to diverse functionalized molecules are demonstrated.
Collapse
Affiliation(s)
- Tian Ye
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Feng-Lian Zhang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Hui-Min Xia
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Xi Zhou
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.
| | - Yi-Feng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
10
|
Qu HJ, Yuan L, Jia CX, Yu HT, Xu H. DFT investigation of hydrogen atom-abstraction reactions of NHC-boranes by various carbon-centered radicals: barriers and correlation analyses. RSC Adv 2020; 10:34752-34763. [PMID: 35514392 PMCID: PMC9057721 DOI: 10.1039/d0ra07638d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, we employed a quantum-mechanical computational method to investigate the hydrogen-atom abstraction reactions of two nitrogen heterocyclic carbene boranes (NHC-boranes), NHC-BH3 and NHC-BH2CN, by a series of carbon-centered radicals bearing various substituents. We explored the degree of correlation of the activation and free energy barriers to their components. Furthermore, we also investigated the effects of the radical and substituent sizes, nucleophilicity/electrophilicity indices, and the spin density distribution of the radical reactants on the three fundamental barriers and the thermal contribution of the reaction energy to the kinetic barrier. Using the generated data, we assessed the abilities of the various radical reactants to abstract the hydrogen atom from NHC-boranes. Further, we performed a similar analysis after dividing those radical reactants into four groups, which were classified based on the dominant factor affecting their electronic density distribution, which involves the inductive effect, conjugation, hyperconjugation, and the feedback of lone-pair electrons. The results and conclusions of this investigation not only provide insight into the relationships between some of the key kinetic and thermodynamic parameters, which is useful for understanding the dynamics of such hydrogen-abstraction reactions, but also provide information for selecting suitable radical reactants for further experimental investigations.
Collapse
Affiliation(s)
- Hong-Jie Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 P. R. China
| | - Lang Yuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Cai-Xin Jia
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|