1
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
2
|
Pivovarenko VG. Multi-parametric sensing by multi-channel molecular fluorescent probes based on excited state intramolecular proton transfer and charge transfer processes. BBA ADVANCES 2023; 3:100094. [PMID: 37347000 PMCID: PMC10279795 DOI: 10.1016/j.bbadva.2023.100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Considering the applications of fluorescent probes and the information they provide, their brightness of fluorescence and photostability are of paramount importance. However, in the case of steady-state fluorescence spectroscopy and fluorescence microscopy, the amount of information can be increased by the application of multi-channel probes, via a multi-band fluorophore introduced in the probe molecule. In most cases, the use of such a multi-band (or multi-channel) fluorophore can also be combined with the concomitant introduction of one or several analyte receptors. Most often, the design of ratiometric probes with multi-band fluorescence emission are based on phenomena such as photoinduced intramolecular charge transfer (ICT) or excited state intramolecular proton transfer (ESIPT). Although ICT probes were up to recently the most popular, ESIPT probes and among them 3-hydroxyflavone derivatives, were shown to be the most productive. Several general problems were resolved by this family of probes, as for example the measurement of local dielectric constant, local H-bond accepting ability, water local concentration and ATP concentration in small volumes. Incorporation of such multi-channel probes into lipid membranes allowed to measure the different membrane potentials and to detect cell apoptosis. Also, it enabled to recognize and characterize the rafts formation in different lipid bilayers and peculiar features of the charged membrane interface. Such probes are also able to provide a concentration-dependent fluorescence signals upon binding of H+, Mg2+and Ba2+ions, and thus to recognize these different cations. The multi-channel probes are effective tools in the study of interactions of macromolecules such as peptides, proteins and nucleic acids. The most useful feature is that they inform simultaneously about several physical parameters, in this way giving a better insight in the investigated system. Thus, by comparing the reviewed probes with other modern fluorescent approaches, it can be concluded they are more informative and accurate tools.
Collapse
Affiliation(s)
- Vasyl G. Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| |
Collapse
|
3
|
Liu F, Liu Y, Chen Y, Yan X, Xiao T. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4 H-chromen-4-one, C 17H 12O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
C17H12O3, monoclinic, P21/c (no. 14), a = 9.2911(15) Å, b = 17.525(3) Å, c = 8.5586(15) Å, β = 109.358(7)° V = 1314.8(4) Å3, Z = 4, R
gt(F) = 0.0550, wR
ref(F
2) = 0.1789, T = 296(2) K.
Collapse
Affiliation(s)
- Feng Liu
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Yi Liu
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Yang Chen
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Xiaolong Yan
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| | - Tao Xiao
- Department of Chemistry and Molecular Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing , 211816 , China
| |
Collapse
|
4
|
Li C, Hu B, Cao Y, Li Y. Elaborating the excited-state double proton transfer mechanism and multiple fluorescent characteristics of 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119854. [PMID: 33933943 DOI: 10.1016/j.saa.2021.119854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, Krishnamoorthy and coworkers reported a new type of proton transfer, which was labeled as 'proton transfer triggered proton transfer', in 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole (bis-HPTA). In this work, the excited-state double proton transfer (ESDPT) mechanism and multiple fluorescent characteristics of bis-HPTA were investigated. Upon photo-excitation, the intramolecular hydrogen bonding strength changed and the electron density of bis-HPTA redistributed. These changes will affect the proton transfer process. In S0 state, the proton transfer processes of bis-HPTA were prohibited on the stepwise and concerted pathways. After vertical excitation to the S1 state, the ESIPT-II process was more likely to occur than the ESIPT-I process, which was contrary to the conclusion that the ESIPT-II process is blocked and the ESIPT-II process takes place after the ESIPT-I process proposed by Krishnamoorthy and coworkers. When the K2 tautomer was formed through the ESIPT-II process, the second proton transfer process on the stepwise pathway was prohibited. On another stepwise pathway, after the ESIPT-I process (form the K1 tautomer), the second proton transfer process should overcome a higher potential barrier than the ESIPT-I process to form ESDPT tautomer. On the concerted pathway, the bis-HPTA can synchronous transfer double protons to form the ESDPT tautomer. The ESDPT tautomer was unstable and immediately converted to the K2 tautomer via a barrierless reverse proton transfer process. Thus, the fluorescent maximum at 465 nm from the ESDPT tautomer reported by Krishnamoorthy and coworkers was ascribed to the K2 tautomer. Most of the fluorophores show dual fluorescent properties, while the bis-HPTA undergoing ESDPT process exhibited three well-separated fluorescent peaks, corresponding to its normal form (438 nm), K1 tautomer (462 nm) and K2 tautomer (450 nm), respectively.
Collapse
Affiliation(s)
- Chaozheng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Bo Hu
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghua Cao
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongfeng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
5
|
Afonin S, Koniev S, Préau L, Takamiya M, Strizhak AV, Babii O, Hrebonkin A, Pivovarenko VG, Dathe M, le Noble F, Rastegar S, Strähle U, Ulrich AS, Komarov IV. In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Front Chem 2021; 9:688446. [PMID: 34262894 PMCID: PMC8273159 DOI: 10.3389/fchem.2021.688446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Serhii Koniev
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Laetitia Préau
- Institute of Zoology (ZOO), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander V. Strizhak
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andrii Hrebonkin
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Margitta Dathe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, (FMP), Berlin, Germany
| | - Ferdinand le Noble
- Institute of Zoology (ZOO), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
- Lumobiotics, Karlsruhe, Germany
| |
Collapse
|
6
|
Le HN, Brazard J, Barnoin G, Vincent S, Michel BY, Leonard J, Burger A. Control of Intermolecular Photoinduced Electron Transfer in Deoxyadenosine-Based Fluorescent Probes. Chemistry 2021; 27:1364-1373. [PMID: 32767410 DOI: 10.1002/chem.202003456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/12/2022]
Abstract
In this work, we report on the Photoinduced Electron Transfer (PET) reaction between a donor (adenine analogue) and an acceptor (3-methoxychromone dye, 3MC) in the context of designing efficient fluorescent probes as DNA sensors. Firstly, Gibbs energy was investigated in disconnected donor-acceptor systems by Rehm-Weller equation. The oxidation potential of the adenine derivative was responsible for exergonicity of the PET reaction in separated combinations. Then, the PET reaction in donor-π-acceptor conjugates was investigated using steady-state fluorescence spectroscopy, acid-mediated PET inhibition and transient absorption techniques. In conjugated systems, PET is a favorable pathway of fluorescent quenching when an electron-rich adenine analogue (d7A) was connected to the fluorophore (3MC). We found that formation of ground-state complexes even at nm concentration range dominated the dye photophysics and generated poorly emissive species likely through intermolecular PET from d7A to 3MC. On the other hand, solution acidification disrupts complexation and turns on the dye emission. Bridging an electron-poor adenine analogue with high oxidation potential (8 d7A) to 3MC presenting low reduction potential is another alternative to prevent complex formation and produce highly emissive monomer conjugates.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Johanna Brazard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France.,Present address: Université de Genève, Département de Chimie Physique, 1211, Genève, France
| | - Guillaume Barnoin
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Steve Vincent
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Benoît Y Michel
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Jérémie Leonard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France
| | - Alain Burger
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| |
Collapse
|
7
|
Agafontsev AM, Shumilova TA, Oshchepkov AS, Hampel F, Kataev EA. Ratiometric Detection of ATP by Fluorescent Cyclophanes with Bellows-Type Sensing Mechanism. Chemistry 2020; 26:9991-9997. [PMID: 32497327 PMCID: PMC7496914 DOI: 10.1002/chem.202001523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Pyrene-based cyclophanes have been synthesized with the aim to realize a bellows-type sensing mechanism for the ratiometric detection of nucleotide concentrations in a buffered aqueous solution. The sensing mechanism involves the encapsulation of a nucleobase between two pyrene rings, which affects the monomer-excimer equilibrium of the receptor in the excited state. The nature of the spacer and its connection pattern to pyrene rings have been varied to achieve high selectivity for ATP. The 1,8-substituted pyrene-based cyclophane with the 2,2'-diaminodiethylamine spacer demonstrates the best selectivity for ATP showing a 50-fold increase in the monomer-excimer emission ratio upon saturation with the nucleotide. The receptor can detect ATP within the biological concentrations range over a wide pH range. NMR and spectroscopic studies have revealed the importance of hydrogen bonding and stacking interactions for achieving a required receptor selectivity. The probe has been successfully applied for the real-time monitoring of creatine kinase activity.
Collapse
Affiliation(s)
- Aleksandr M. Agafontsev
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS9 Lavrentiev Avenue630090NovosibirskRussian Federation
- Institute of ChemistryTechnische Universität Chemnitz09107ChemnitzGermany
| | | | | | - Frank Hampel
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Evgeny A. Kataev
- Department of Chemistry and PharmacyUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
8
|
Ni M, Fang H. Modulating excited‐state intramolecular proton transfer of 2‐(5‐(4‐carboxyphenyl)‐2‐hydroxyphenyl)benzothiazole depending on substituents: A DFT/TD‐DFT study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mei Ni
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing China
| |
Collapse
|
9
|
Kysil A, Biitseva A, Bugera O, Yegorova T, Voitenko Z. Synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2020. [DOI: 10.17721/fujcv8i2p176-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Simple and efficient synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones is elaborated. The method relies on CDI-mediated cyclocondensation of substituted 4-oxochromane-2-carboxylic acids and amidoximes. The protocol allows the preparation of 2-oxadiazolylchromanones decorated with two pharmacophores (2,3-dihydro-4H-chromen-4-one and 1,2,4-oxadiazole) that are in high demand in drug discovery.
Collapse
|
10
|
Sukpattanacharoen C, Salaeh R, Promarak V, Escudero D, Kungwan N. Heteroatom substitution effect on electronic structures, photophysical properties, and excited-state intramolecular proton transfer processes of 3-hydroxyflavone and its analogues: A TD-DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
12
|
Hessz D, Bojtár M, Mester D, Szakács Z, Bitter I, Kállay M, Kubinyi M. Hydrogen bonding effects on the fluorescence properties of 4'-diethylamino-3-hydroxyflavone in water and water-acetone mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:96-105. [PMID: 29860173 DOI: 10.1016/j.saa.2018.05.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
The fluorescence properties of 4'-diethylamino-3-hydroxyflavone (FET), a dye probe sensitive to the polarity as well as the hydrogen bonding ability of its environment, have been studied in acetone-water mixtures by measuring spectra and decay curves over the whole composition range and analyzing the results on the basis of theoretical calculations. In acetone, like in most of organic solvents, the dye showed dual fluorescence, due to an excited state intramolecular proton transfer (ESIPT), in which a quasi-equilibrium between the two excited species, N* and T*, was reached. In acetone-water mixtures with lower molar fractions of water, where the water molecules are largely dispersed, only one type of hydrate could be detected, a complex with 1:1 composition, showing only N* emission, but with a high (0.45) fluorescence quantum yield. At higher water concentrations, the interaction of FET with the hydrogen-bonded water clusters resulted in fluorescence quenching. In neat water the fluorescence quantum yield fell to ~0.001. Theoretical calculations on a FET-acetone complex, a FET-water complex and a FET-water-acetone triple complex (the latter as model for the samples with low water concentrations) concluded that ESIPT was energetically favored in all the models, but the E(N*)-E(T*) energy difference for the water complexes was much lower. The kinetic barrier of ESIPT was found greatly higher in the FET-water complex than in the isolated solute. The intermolecular hydrogen bonds in the water complexes became significantly stronger following the excitation, stabilizing the N* form of the hydrated dye.
Collapse
Affiliation(s)
- Dóra Hessz
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O. Box 286, Hungary
| | - Márton Bojtár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Zoltán Szakács
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Miklós Kubinyi
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O. Box 286, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
| |
Collapse
|
13
|
Kucherak OA, Shvadchak VV, Kyriukha YA, Yushchenko DA. Synthesis of a Fluorescent Probe for Sensing Multiple Protein States. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Oleksandr A. Kucherak
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Yevhenii A. Kyriukha
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology; Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
14
|
Bojtár M, Janzsó-Berend PZ, Mester D, Hessz D, Kállay M, Kubinyi M, Bitter I. An uracil-linked hydroxyflavone probe for the recognition of ATP. Beilstein J Org Chem 2018; 14:747-755. [PMID: 29719572 PMCID: PMC5905274 DOI: 10.3762/bjoc.14.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Nucleotides are essential molecules in living systems due to their paramount importance in various physiological processes. In the past years, numerous attempts were made to selectively recognize and detect these analytes, especially ATP using small-molecule fluorescent chemosensors. Despite the various solutions, the selective detection of ATP is still challenging due to the structural similarity of various nucleotides. In this paper, we report the conjugation of a uracil nucleobase to the known 4'-dimethylamino-hydroxyflavone fluorophore. Results: The complexation of this scaffold with ATP is already known. The complex is held together by stacking and electrostatic interactions. To achieve multi-point recognition, we designed the uracil-appended version of this probe to include complementary base-pairing interactions. The theoretical calculations revealed the availability of multiple complex structures. The synthesis was performed using click chemistry and the nucleotide recognition properties of the probe were evaluated using fluorescence spectroscopy. Conclusions: The first, uracil-containing fluorescent ATP probe based on a hydroxyflavone fluorophore was synthesized and evaluated. A selective complexation with ATP was observed and a ratiometric response in the excitation spectrum.
Collapse
Affiliation(s)
- Márton Bojtár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Péter Zoltán Janzsó-Berend
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dóra Hessz
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Miklós Kubinyi
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|