1
|
Eliwa EM, Bedair AH, Djukic JP. Transition metal-catalyzed C(sp 2/sp 3)-H α-fluoroalkenylation from gem-(bromo/di)fluoroalkenes to monofluoroalkenes: scope, mechanisms, and synthetic applications. Org Biomol Chem 2024; 22:6860-6904. [PMID: 39136141 DOI: 10.1039/d4ob01044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Organofluorines have a broad range of industrial applications, such as pharmaceuticals, liquid crystal displays (LCDs), solar cells, textiles, and construction coatings, and are used in peptidomimetics, surfactants, refrigerants, anesthetics, and agrochemicals. Among them are versatile monofluoroalkenes that play a crucial role in medicinal and synthetic chemistry. The synthetic strategies for this class of molecules are limited, and prior efforts frequently suffered from poor atom- and step-economies. As a surrogate pathway for traditional cross-coupling transformations, transition metal (TM)-catalyzed C-H direct α-fluoroalkenylation overcomes these obstacles and provides straightforward techniques to access monofluoroalkenes. Nevertheless, substrate scope is still a challenge for catalysis, where gem-bromofluoroalkene synthons are applicable with electronically biased substrates such as azoles, while gem-difluoroalkene-based strategies are limited to substrates containing N-based directing groups. Herein, we review the cutting-edge fluoroalkenylation research for direct synthesis of monofluoroalkenes achieved during the last decade (2013-2023). This review is divided into two main parts: the first part discusses TM-catalyzed direct α-fluoroalkenylation via the merging of C-H activation and C(sp2)-Br cleavage strategies using gem-bromofluoroalkenes, and the second part describes the same reaction, albeit with C(sp2)-F cleavage of highly explored gem-difluoroolefins. Our review surveys all previously reported monofluoroalkenes in this research area, including their preparation techniques, stereoselectivity, and yield percentages. Furthermore, optimal conditions, reactant scope, mechanistic investigations, synthetic applications, benefits, and drawbacks of each presented methodology are critically discussed.
Collapse
Affiliation(s)
- Essam M Eliwa
- Laboratoire de Chimie et Systémique Organométallique - Institut de Chimie de Strasbourg UMR7177, CNRS- Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed H Bedair
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométallique - Institut de Chimie de Strasbourg UMR7177, CNRS- Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Wang Y, Tsui GC. Stereodivergent Palladium-Catalyzed C-F Bond Functionalization of gem-Difluoroalkenes. Org Lett 2024; 26:5822-5826. [PMID: 38937877 PMCID: PMC11250036 DOI: 10.1021/acs.orglett.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
We herein describe a stereodivergent C-F bond functionalization of gem-difluoroalkenes. Using trisubstituted β,β-difluoroacrylates, both E and Z monofluoroalkene products can be obtained with excellent diastereoselectivities. The design of two different reaction manifolds, i.e., Pd(II)- versus Pd(0)-catalyzed cross-coupling of boronic acids, is the key to stereocontrol.
Collapse
Affiliation(s)
- Yanhui Wang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Gavin Chit Tsui
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Radzhabov MR, Mankad NP. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chem Commun (Camb) 2023; 59:11932-11946. [PMID: 37727948 DOI: 10.1039/d3cc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.
Collapse
Affiliation(s)
- Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
4
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Cui X, Qu J, Yi J, Sun W, Hu J, Guo S, Jin JW, Chen WH, Wong WL, Wu JQ. Rh(III)-catalyzed redox-neutral C-H alkenylation of benzamides with gem-difluorohomoallylic silyl ethers via β-H elimination. Chem Commun (Camb) 2023; 59:3747-3750. [PMID: 36897608 DOI: 10.1039/d3cc00529a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fluorinated molecules are widely used in pharmaceutical and agrochemical industries. Herein we report the synthesis of 2-(3,3-difluoro-4-(silyloxy)but-1-en-1-yl)benzamides from the unprecedented rhodium(III)-catalyzed alkenylation of various benzamides with difluorohomoallylic silyl ethers. The practicability of this protocol is demonstrated by its broad substrate compatibility, good functional group tolerance, ready scalability and high regioselectivity. The oxygen in difluorohomoallylic silyl ethers makes β-H elimination feasible, which suppresses both the β-F elimination and dialkenylation of benzamides. This redox-neutral reaction proceeds efficiently via N-O bond cleavage without external oxidants and thus provides new opportunities for the synthesis of elaborate difluorinated compounds from readily available fluorinated synthons.
Collapse
Affiliation(s)
- Xueli Cui
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jing Qu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jianfeng Yi
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Weiqiang Sun
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Suqin Guo
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jing-Wei Jin
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Myronova V, Cahard D, Marek I. Stereoselective Preparation of CF 3-Containing Cyclopropanes. Org Lett 2022; 24:9076-9080. [DOI: 10.1021/acs.orglett.2c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Veronika Myronova
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
8
|
|
9
|
Yu H, Zhang Q, Zi W. Synergistic Pd/Cu-catalyzed enantioselective Csp 2-F bond alkylation of fluoro-1,3-dienes with aldimine esters. Nat Commun 2022; 13:2470. [PMID: 35513394 PMCID: PMC9072389 DOI: 10.1038/s41467-022-30152-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/12/2022] [Indexed: 02/03/2023] Open
Abstract
Due to high bond dissociation energies of Csp2-F bonds, using fluorinated compounds in Csp2-Csp3 cross-coupling is difficult. Here the authors report a protocol for enantioselective Csp2-Csp3 coupling of dienyl fluorides with aldimine esters, enabled by synergistic copper and palladium catalysis. This reaction represents the first example of asymmetric Csp2-Csp3 cross-coupling involving an inert Csp2-F bond and provides expeditious access to chiral α-alkenyl α-amino acids with high enantioselectivity. Control experiments suggest that the Csp2-F bond activation occurs through a pathway involving PdH migratory insertion and subsequent allylic defluorination, rather than by direct oxidative addition of the Csp2-F bond to Pd(0). The detailed mechanism is further investigated by DFT calculation and the enantioselectivity is rationalized.
Collapse
Affiliation(s)
- Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China.
| |
Collapse
|
10
|
Hu Y, Liu X, Ren Z, Hu B, Li J. Csp3‒H Monofluoroalkenylation via Stereoselective C‒F Bond Cleavage. Chem Commun (Camb) 2022; 58:2734-2737. [DOI: 10.1039/d1cc06247f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical nickel- and photoredox-catalyzed Csp3‒H monofluoroalkenylation through chelation-assisted Csp2‒F bond cleavage of gem-difluoroalkenes has been developed, which provides an expedient access to the synthesis of tetrasubstituted fluoroalkenes with complete...
Collapse
|
11
|
Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Org Chem Front 2022. [DOI: 10.1039/d1qo01544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the advances in transition-metal catalyzed reactions with fluorinated building blocks via directed C–H bond activation for the construction of diverse organic molecules with an insight into the probable mechanistic pathway.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Vivek Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Aishwarya Lad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| |
Collapse
|
12
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Fujita T, Kobayashi Y, Takahashi I, Morioka R, Ichitsuka T, Ichikawa J. Nickel-Catalyzed Reductive Allyl-Aryl Cross-Electrophile Coupling via Allylic C-F Bond Activation. Chemistry 2021; 28:e202103643. [PMID: 34881467 DOI: 10.1002/chem.202103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/06/2022]
Abstract
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C-F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C-I bonds of the aryl iodides and the C-F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C-F bonds was avoided to permit their transformation.
Collapse
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yutaro Kobayashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ikko Takahashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ryutaro Morioka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomohiro Ichitsuka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi, 983-8551, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
14
|
Xu H, Chen W, Bian M, Xu H, Gao H, Wang T, Zhou Z, Yi W. Gem-Difluorocyclopropenes as Versatile β-Monofluorinated Three-sp 2 Carbon Sources for Cp*Rh(III)-Catalyzed [4 + 3] Annulation: Experimental Development and Mechanistic Insight. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huiying Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Mengyao Bian
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ting Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
15
|
Casalta C, Gourlaouen C, Bouzbouz S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of α-Fluoro But-1-enoic Acid Amides via β-F-Elimination in Water. Org Lett 2021; 23:8122-8126. [PMID: 34617755 DOI: 10.1021/acs.orglett.1c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allylic arylation of α-fluoro but-1-enoic acid amides with arylboronic acids was carried out in water by comparing the catalytic activity of iridium(III) and rhodium(III). Ir(III) has shown a strong superiority over Rh(III) to give allyl-aryl coupling products with excellent stereoselectivity in favor of the Z-isomer. The origin of high stereoselectivity is perhaps because of the a coordination of iridium Ir-N or Ir-O.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 67070 Strasbourg, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| |
Collapse
|
16
|
Ramachandran K, Anbarasan P. Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes. Chem Sci 2021; 12:13442-13449. [PMID: 34777763 PMCID: PMC8528013 DOI: 10.1039/d1sc03476f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| |
Collapse
|
17
|
Zhao B, Prabagar B, Shi Z. Modern strategies for C–H functionalization of heteroarenes with alternative coupling partners. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhao B, Rogge T, Ackermann L, Shi Z. Metal-catalysed C-Het (F, O, S, N) and C-C bond arylation. Chem Soc Rev 2021; 50:8903-8953. [PMID: 34190223 DOI: 10.1039/c9cs00571d] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of C-aryl bonds has been the focus of intensive research over the last decades for the construction of complex molecules from simple, readily available feedstocks. Traditionally, these strategies involve the coupling of organohalides (I, Br, Cl) with organometallic reagents (Mg, Zn, B, Si, Sn,…) such as Kumada-Corriu, Negishi, Suzuki-Miyaura, Hiyama and Sonogashira cross-couplings. More recently, alternative methods have provided access to these products by reactions with less reactive C-Het (F, O, S, N) and C-C bonds. Compared to traditional methods, the direct cleavage and arylation of these chemical bonds, the essential link in accessible feedstocks, has become increasingly important from the viewpoint of step-economy and functional-group compatibility. This comprehensive review aims to outline the development and advances of this topic, which was organized into (1) C-F bond arylation, (2) C-O bond arylation, (3) C-S bond arylation, (4) C-N bond arylation, and (5) C-C bond arylation. Substantial attention has been paid to the strategies and mechanistic investigations. We hope that this review can trigger chemists to discover more efficient methodologies to access arylation products by cleavage of these C-Het and C-C bonds.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | |
Collapse
|
19
|
Yang J, Shi W, Chen W, Gao H, Zhou Z, Yi W. Rh(III)-Catalyzed Chemoselective C-H Alkenylation and [5 + 1] Annulation with Gem-Difluoromethylene Enabled by the Distinctive Fluorine Effect. J Org Chem 2021; 86:9711-9722. [PMID: 34189921 DOI: 10.1021/acs.joc.1c01012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The efficient couplings of diverse N-arylureas and gem-difluoromethylene alkynes have been realized via Rh(III)-catalyzed chemoselective C-H alkenylation and [5 + 1] annulation, which were induced by the distinctive fluorine effect to provide the different coordination mode of the Rh(III) catalyst binding to the directing group, thereby giving the direct access to difluorinated 2-alkenyl arylureas and 3,4-dihydroquinazolin-2(1H)-ones bearing both an α-quaternary carbon center and a monofluoroalkenyl moiety with broad substrate compatibility and good functional group tolerance. The synthetic application in C-H alkenylation of the N-pyridylaniline, the late-stage [3 + 2] annulation, and the derivation of the obtained products has been also demonstrated to further strengthen the synthetic utility of the chemodivergent transformations.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Wendi Shi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| |
Collapse
|
20
|
Zhang ZZ, Liao G, Chen HM, Shi BF. Thioamide-Directed Cp*Co(III)-Catalyzed C-H Allylation of Ferrocenes. Org Lett 2021; 23:2626-2631. [PMID: 33711894 DOI: 10.1021/acs.orglett.1c00533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, the first Cp*Co(III)-catalyzed C-H allylation of ferrocene thioamides with allyl carbonates has been developed. This reaction is compatible with a wide range of functional groups, providing various allylated ferrocene derivatives in up to 90% yields. In addition, the C-H allylation protocol is also compatible with the use of vinylcyclopropanes as allylating reagents by merging C-H and C-C activation into one catalytic system. Mechanistic studies revealed that the thiocarbonyl-directing group plays a vital role in C-H activation.
Collapse
Affiliation(s)
- Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hao-Ming Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
21
|
Zhong X, Lin S, Gao H, Liu FX, Zhou Z, Yi W. Rh(III)-Catalyzed Redox-Neutral C-H Activation/[3 + 2] Annulation of N-Phenoxy Amides with Propargylic Monofluoroalkynes. Org Lett 2021; 23:2285-2291. [PMID: 33657804 DOI: 10.1021/acs.orglett.1c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and redox-neutral Rh(III)-catalyzed C-H activation/[3 + 2] annulation of N-phenoxy amides with propargylic monofluoroalkynes has been realized to afford 3-alkylidene dihydrobenzofurans with an interesting α-quaternary carbon center. Combined experimental and computational mechanistic studies revealed that a Rh(III)-Rh(V)-Rh(III) catalytic pathway/uncatalyzed intramolecular [H···F] bonding-assisted SN2'-type substitution cascade might be involved in the catalytic cycle, thereby enabling an excellent site-/regioselectivity with broad substrate/functional group compatibility, including the complete retention of the highly strained cyclobutyl structure in the 3-position.
Collapse
Affiliation(s)
- Xiuhua Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shuang Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Fu-Xiaomin Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
22
|
Chandra Sau M, Mandal S, Bhattacharjee M. Monoallylation and benzylation of dicarbonyl compounds with alcohols catalysed by a cationic cobalt(iii) compound. RSC Adv 2021; 11:9235-9245. [PMID: 35423451 PMCID: PMC8695336 DOI: 10.1039/d0ra09778k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Monoallylation and monoalkylation of diketones and β-keto esters with allylic and benzylic alcohols catalysed by [Cp*Co(CH3CN)3][SbF6]2 (I) are reported. The method does not require any additive and affords regioselective products. The mechanistic investigations were done by in situ 1H NMR spectroscopy as well as control experiments. It has been shown that reactions proceed via η3-allyl complex formation or ally ether intermediate. The alkylation takes place via only ether intermediate. The resulting allylated and alkylated products have been used for the synthesis of eleven new trisubstituted pyrazoles and one pyrazolone.
Collapse
Affiliation(s)
- Mohan Chandra Sau
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Smita Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Manish Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
23
|
|
24
|
Liu S, Zhu L, Zhang T, Zhong K, Li SJ, Bai R, Lan Y. How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Org Lett 2021; 23:1489-1494. [PMID: 33565315 DOI: 10.1021/acs.orglett.1c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations have been performed to reveal the chemoselectivity of Rh-catalyzed chiral C-F cleavage and γ-site functionalization. We found that the chemoselectivity is controlled by β-F elimination in methanol solvent, leading to formation of the alkynylic product. In isobutyronitrile solvent, the chemoselectivity is controlled by the allene insertion step, where the fluoroalkenylic product can be observed. The difference can be explained by analysis of the explicit solvent models.
Collapse
Affiliation(s)
- Shihan Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.,Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
25
|
Oliveira JCA, Dhawa U, Ackermann L. Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04205] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Li Z, Qiu X, Lou J, Wang Q. Progress in Visible-Light Catalyzed C—F Bond Functionalization of gem-Difluoroalkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Chen K, Chen W, Chen F, Zhang H, Xu H, Zhou Z, Yi W. Synthesis of 2-aminobenzofurans via base-mediated [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00709b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient metal-free [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes has been realized for the assembly of 2-aminobenzofuran derivatives with potent cytotoxicity against cancer cell lines and application potential for DELs.
Collapse
Affiliation(s)
- Kaifeng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Haiman Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Huiying Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
28
|
Shu B, Chen SY, Deng NX, Zheng T, Xie H, Xie XL, Wu JQ, Cao H, Zhang SS. Rhodium( iii)-catalyzed C–H/C–F activation sequence: expedient and divergent synthesis of 2-benzylated indoles and 2,2′-bis(indolyl)methanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00462j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel method for the construction of fluorinated 2-benzylated indoles and 2,2’-bis(indolyl)methanes was developed via Rh(iii)-catalyzed C–H/C–F activation of arenes with employing 3,3-difluoro-2-exo-methylidene indolines as cross-coupling partner.
Collapse
Affiliation(s)
- Bing Shu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- Center for Drug Research and Development
| | - Shao-Yong Chen
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
| | - Nan-Xiang Deng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Tao Zheng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Xiao-Ling Xie
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan
- P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
29
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
30
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020; 60:1959-1966. [DOI: 10.1002/anie.202013052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
31
|
Carral-Menoyo A, Sotomayor N, Lete E. Cp*Co(III)-Catalyzed C-H Hydroarylation of Alkynes and Alkenes and Beyond: A Versatile Synthetic Tool. ACS OMEGA 2020; 5:24974-24993. [PMID: 33043175 PMCID: PMC7542607 DOI: 10.1021/acsomega.0c03639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 05/03/2023]
Abstract
The use of earth-abundant first-row transition metals, such as cobalt, in C-H activation reactions for the construction and functionalization of a wide variety of structures has become a central topic in synthetic chemistry over the last few years. In this context, the emergence of cobalt catalysts bearing pentamethylcyclopentadienyl ligands (Cp*) has had a major impact on the development of synthetic methodologies. Cp*Co(III) complexes have been proven to possess unique reactivity compared, for example, to their Rh(III) counterparts, obtaining improved chemo- or regioselectivities, as well as yielding new reactivities. This perspective is focused on recent advances on the alkylation and alkenylation reactions of (hetero)arenes with alkenes and alkynes under Cp*Co(III) catalysis.
Collapse
Affiliation(s)
- Asier Carral-Menoyo
- Departamento de Química
Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| | - Nuria Sotomayor
- Departamento de Química
Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| | - Esther Lete
- Departamento de Química
Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
| |
Collapse
|
32
|
Zhang L, Deng K, Wu G, Yang J, Tang S, Fu X, Xia C, Ji Y. Ruthenium(II)-Catalyzed α-Fluoroalkenylation of Oxime Ethers with gem-Difluorostyrenes via C-H Activation and C-F Cleavage. J Org Chem 2020; 85:12670-12681. [PMID: 32885652 DOI: 10.1021/acs.joc.0c01842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel route for ruthenium(II)-catalyzed α-fluoroalkenylation of oxime ethers with gem-difluorostyrenes via C-H activation and C-F cleavage has been developed for the first time. Notably, the alkenyl units of products exhibit exclusive Z-configuration. This reaction features a broad substrate scope and good functional group tolerance. A plausible reaction mechanism is confirmed by an available cycloruthenated intermediate. Besides, the O-methyl oximyl-directing group can be readily removed to access the α-fluoroalkenylated acetophenones.
Collapse
Affiliation(s)
- Lili Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Kezuan Deng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gaorong Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinyue Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shibiao Tang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaopan Fu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chengcai Xia
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, P. R. China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
33
|
Wu M, Wang R, Chen F, Chen W, Zhou Z, Yi W. Synthesis of Indenopyrazole Frameworks via Cascade C–H Functionalization/[3 + 2] Dipolar Cycloaddition/Aromatization Rearrangement Reactions. Org Lett 2020; 22:7152-7157. [DOI: 10.1021/acs.orglett.0c02506] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ruiqi Wang
- School of Nursing, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, China
| | - Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
34
|
Rogge T, Oliveira JCA, Kuniyil R, Hu L, Ackermann L. Reactivity-Controlling Factors in Carboxylate-Assisted C–H Activation under 4d and 3d Transition Metal Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02808] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Wu F, Deraedt C, Cornaton Y, Contreras-Garcia J, Boucher M, Karmazin L, Bailly C, Djukic JP. Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A Noncovalent Interaction-Inclusive Theoretical Insight and Experimental Validation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fule Wu
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Deraedt
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Julia Contreras-Garcia
- Laboratoire de Chimie Théorique UMR 7616 CNRS, Sorbonne Université, Site Jussieu, 4 place Jussieu, 75052 Paris cedex, France
| | - Mélanie Boucher
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
36
|
Wang N, Yang Q, Deng Z, Mao X, Peng Y. Rhodium-Catalyzed Merging of 2-Arylquinazolinone and 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Monofluoroolefin Quinazolinone Derivatives. ACS OMEGA 2020; 5:14635-14644. [PMID: 32596601 PMCID: PMC7315571 DOI: 10.1021/acsomega.0c01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 05/07/2023]
Abstract
An efficient method for the synthesis of 2-(o-monofluoroalkenylaryl)quinazolinone derivatives was developed. In this context, the quinazolinone ring served as the inherent directing group, 2,2-difluorovinyl tosylate was used as the monofluoroolefin synthon, and Rh(III)-catalyzed C-H bond difluorovinylation of 2-arylquinazolinons was performed to give the corresponding monofluoroalkene-containing quinazolinons in yields of 65-92%. The method is characterized by broad synthetic utility, mild conditions, and high efficiency.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Zhihong Deng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Xuechun Mao
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| |
Collapse
|
37
|
Zhang XG, Guo P, Han JF, Ye KY. Cobalt fluorides: preparation, reactivity and applications in catalytic fluorination and C-F functionalization. Chem Commun (Camb) 2020; 56:8512-8523. [PMID: 32558844 DOI: 10.1039/d0cc03089a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the investigation of cobalt fluorides in organofluorine chemistry are highlighted. The preparation and reactivity of inorganic and organometallic cobalt fluorides are discussed. The in-depth understanding of the structures and reactivity of cobalt fluorides allows chemists to develop diverse innovative catalytic fluorination and C-F functionalization.
Collapse
Affiliation(s)
- Xiang-Gui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | | | | | | |
Collapse
|
38
|
Ma Q, Wang Y, Tsui GC. Stereoselective Palladium‐Catalyzed C−F Bond Alkynylation of Tetrasubstituted
gem
‐Difluoroalkenes. Angew Chem Int Ed Engl 2020; 59:11293-11297. [DOI: 10.1002/anie.202002219] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Qiao Ma
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| | - Yanhui Wang
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| | - Gavin Chit Tsui
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| |
Collapse
|
39
|
Ma Q, Wang Y, Tsui GC. Stereoselective Palladium‐Catalyzed C−F Bond Alkynylation of Tetrasubstituted
gem
‐Difluoroalkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qiao Ma
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| | - Yanhui Wang
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| | - Gavin Chit Tsui
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR Hong Kong
| |
Collapse
|
40
|
Casalta C, Bouzbouz S. Rhodium(III) Catalyzed Regioselective and Stereospecific Allylic Arylation in Water by β-Fluorine Elimination of the Allylic Fluoride: Toward the Synthesis of Z-Alkenyl-Unsaturated Amides. Org Lett 2020; 22:2359-2364. [PMID: 32159966 DOI: 10.1021/acs.orglett.0c00551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A direct coupling of arylboronic acids with allylic fluorides was carried out in water without additives using a rhodium(III) catalyst (Cp*RhCl2)2. The transformation proceeded with excellent γ-selectivity to afford major allyl-aryl coupling products (Z) γ-substituted α,β-unsaturated amides. The reactions of α-chiral allylic fluorides took place with excellent α-to-γ chirality transfer to give allylated arenes with a stereogenic center at the benzylic and allylic position.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière 76131, Mont Saint Aignan, France
| |
Collapse
|
41
|
Koley S, Altman RA. Recent Advances in Transition Metal-Catalyzed Functionalization of gem-Difluoroalkenes. Isr J Chem 2020; 60:313-339. [PMID: 32523163 PMCID: PMC7286626 DOI: 10.1002/ijch.201900173] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 11/11/2022]
Abstract
gem-Difluorinated alkenes are readily accessible building blocks that can undergo functionalization to provide a broad spectrum of fluorinated and non-fluorinated products. Herein, we review recent (since 2017) transition metal-catalyzed transformations of these specialized alkenes and summarize general reactivity patterns of these reactions. Many transition metal-catalyzed reactions undergo net C-F bond functionalization reactions to deliver monofluorinated products. These reactions typically proceed through β-fluoro alkylmetal intermediates that readily eliminate a β-fluoride to deliver monofluoroalkene products. A second series of reactions exploit coinage metal fluorides to add F- to the gem-difluorinated alkene, and further functionalization delivers trifluoromethyl-containing products. In stark contrast, few transition metal-catalyzed reactions proceed in net "fluorine-retentive processes" to deliver difluoromethylene-based products.
Collapse
Affiliation(s)
- Suvajit Koley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Ryan A Altman
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| |
Collapse
|
42
|
Yao J, Kong L, Li X. Rhodium-catalyzed coupling of arenes and fluorinated α-diazo diketones: synthesis of chromones. Chem Commun (Camb) 2020; 56:13169-13172. [DOI: 10.1039/d0cc05664b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rh(iii)-Catalyzed synthesis of chromones using arenes and fluorinated diazo reagents via C–H activation, carbene insertion, and uncatalyzed intramolecular nucleophilic aromatic substitution.
Collapse
Affiliation(s)
- Jiayi Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Lingheng Kong
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
- China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710062
- China
| |
Collapse
|
43
|
Han JF, Guo P, Zhang XG, Liao JB, Ye KY. Recent advances in cobalt-catalyzed allylic functionalization. Org Biomol Chem 2020; 18:7740-7750. [PMID: 32940308 DOI: 10.1039/d0ob01581d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unlike many other state-of-the-art transition-metal-catalyzed allylic substitutions, cobalt-catalyzed allylic substitution has received much less attention from synthetic chemists for a long time despite the fact that cobalt is an earth-abundant, low-cost and thus much more sustainable option as either a reagent or a catalyst in organic synthesis. Recently, there has been an upsurge in the use of cobalt catalysis in allylic functionalization reactions, including allylic substitution, nucleophilic allylation, and Heck-type allylic functionalization, to construct synthetically significant building blocks featuring a double bond available for diverse downstream synthetic manipulations. This review highlights the current development of cobalt catalysis in allylic functionalization with an in-depth discussion of the reaction scope and mechanistic insights.
Collapse
Affiliation(s)
- Jun-Fa Han
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | | | | | | | | |
Collapse
|
44
|
Liu C, Zeng H, Zhu C, Jiang H. Recent advances in three-component difunctionalization of gem-difluoroalkenes. Chem Commun (Camb) 2020; 56:10442-10452. [DOI: 10.1039/d0cc04318d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-component difunctionalization of gem-difluoroalkenes via the generation and transformation of a α-fluoroalkylated carbanion, a carbon–metal species, a radical, and a carbocation intermediate.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
45
|
Jagtap RA, Punji B. C−H Functionalization of Indoles by 3d Transition‐Metal Catalysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900554] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul A. Jagtap
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| | - Benudhar Punji
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| |
Collapse
|
46
|
Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Silver-promoted decarboxylative radical addition/annulation of oxamic acids with gem-difluoroolefins: concise access to CF 2-containing 3,4-dihydroquinolin-2-ones. Org Biomol Chem 2019; 17:8527-8532. [PMID: 31512696 DOI: 10.1039/c9ob01236b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described is a silver-promoted decarboxylative radical addition/annulation of oxamic acids with gem-difluoroalkenes. This reaction proceeded under mild reaction conditions with broad functional group compatibility, enabling the convenient synthesis of various structurally diverse CF2-containing 3,4-dihydroquinolin-2-ones that might find applications in medical chemistry.
Collapse
Affiliation(s)
- Guojun Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | | | | | | | | | | |
Collapse
|
47
|
Song S, Liu H, Wang L, Zhu C, Loh T, Feng C. Rhodium‐Catalyzed Defluorinative Vinylation of
gem
‐Difluoroalkenes for the Synthesis of 2‐Fluoro‐1,3‐dienes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shengjin Song
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing Jiangsu 211816 China
| | - Huan Liu
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Lu Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing Jiangsu 211816 China
| | - Chuan Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing Jiangsu 211816 China
| | - Teck‐Peng Loh
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University, 637371 Singapore
| | - Chao Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing Jiangsu 211816 China
| |
Collapse
|
48
|
Li N, Wang Y, Kong L, Chang J, Li X. Cobalt(III)/Rhodium(III)‐Catalyzed Regio‐ and Stereoselective Allylation of 8‐Methylquinoline via
sp
3
C−H Activation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Na Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
- School of pharmacyXinxiang Medical University 453003 People's Republic of China
| | - Yahui Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| | - Lingheng Kong
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 People's Republic of China
- Dalian Institute of Chemical PhysicsChinese Academy of Chemical Physics Dalian 116023 People's Republic of China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453007 People's Republic of China
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 People's Republic of China
- Dalian Institute of Chemical PhysicsChinese Academy of Chemical Physics Dalian 116023 People's Republic of China
| |
Collapse
|
49
|
Gao H, Sun M, Zhang H, Bian M, Wu M, Zhu G, Zhou Z, Yi W. Stereoselective β-F Elimination Enabled Redox-Neutral [4 + 1] Annulation via Rh(III)-Catalyzed C-H Activation: Access to Z-Monofluoroalkenyl Dihydrobenzo[ d]isoxazole Framework. Org Lett 2019; 21:5229-5233. [PMID: 31241340 DOI: 10.1021/acs.orglett.9b01831] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient and practical Rh(III)-catalyzed redox-neutral [4 + 1] annulation of N-phenoxy amides with α, α-difluoromethylene alkynes has been realized to give direct access to the Z-configured monofluoroalkenyl dihydrobenzo[ d]isoxazole framework with broad substrate compatibility and good functional group tolerance, which was further enhanced by the late-stage C-H modification of complex bioactive compounds. Subsequent density functional theory calculations revealed that the stereoselective β-F elimination involving an allene species played a decisive role in determining the reaction outcome and such Z-selectivity.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Ming Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Haiman Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Min Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Guoxun Zhu
- School of Chemical Engineering and Technology , Sun Yat-sen University , Guangzhou , Guangdong 510275 , China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| |
Collapse
|
50
|
Mekni NH. Nucleophilic Vinyl/Allyl, CF3 and CF2α Perfluoroalkyl Groups Substitution and/or E1CB Elimination Reactions of Fluorine Atom(s) in Organofluorinated Compounds. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626130042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct substitution and elimination reactions of the fluorine atoms of difluoromethylene CF2α groups of nonspaced perfluoroalkyl chains, CF3 groups are very difficult to achieve. But, they become feasible with fluoro-alkenes, alkynes, imines or carbonyl derivatives, for which vinylic substitution and related carbanion-mediated pathways are available. In this review, we classify the major and unique fluorine substitution/elimination and rearrangement reactions and discuss their contribution to the synthesis of heterocyclic compounds.
Collapse
Affiliation(s)
- Nejib Hussein Mekni
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Munawarah, Saudi Arabia
| |
Collapse
|