1
|
Wang TY, Liu H, Liu M, Shih YH, Yu X, Li Z, Chueh CC. Fluoranthene imide dimers with strong isomeric effects on the charge transport properties. Phys Chem Chem Phys 2024; 26:26895-26899. [PMID: 39412529 DOI: 10.1039/d4cp03245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
To date, the development of high-performance n-type organic semiconductors has remained challenging due to the scarcity of highly electron-deficient π-conjugated structural units and the difficulty of controlling intermolecular packing in the thin-film state. In addition, there have been few reports on the use of dimer design to tune the optoelectronic properties of materials. Herein, we report new cyano-substituted fluoranthene imide-based dimers (F16 and F17) for small-molecule n-type organic semiconductors. It is noteworthy that substituents at different positions lead to different film morphologies and very distinct thermal aggregation behaviors due to different dihedral angles. The self-assembly behavior of F17 improves thermal stability. Therefore, F17, which has a closer cyano groups structure, exhibits better field-effect transistor performance, with a maximum mobility of 6.6 × 10-4 cm2 V-1 s-1, while F16 does not exhibit any transistor performance.
Collapse
Affiliation(s)
- Ting-Yu Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Huangcheng Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Miao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yen-Han Shih
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Shen T, Jiang Z, Wang Y, Liu Y. Rational Molecular Design of Diketopyrrolopyrrole-Based n-Type and Ambipolar Polymer Semiconductors. Chemistry 2024; 30:e202401812. [PMID: 38887976 DOI: 10.1002/chem.202401812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Diketopyrrolopyrrole (DPP)-based polymer semiconductors have drawn great attention in the field of organic electronics due to the planar structure, decent solubilizing capability, and high crystallinity. However, the electron-deficient capacity of DPP derivatives are not strong enough, leading to relatively high-lying lowest unoccupied molecular orbital (LUMO) energy levels of the corresponding polymers. As a result, n-type and ambipolar DPP-based polymers are rare and their electron mobilities also lag far behind the p-type counterparts, which limits the development of important p-n-junction-based electronic devices. Therefore, new design strategies have been proposed recent years to develop n-type/ambipolar DPP-based polymers with improved performances. In this view, these molecular design strategies are summarized, including copolymerization of DPP with different acceptors and weak donors, DPP flanked aromatic ring modification, DPP-core ring expansion and DPP dimerization. The relationship between the chemical structures and organic thin-film transistor performances is intensively discussed. Finally, a perspective on future trends in the molecular design of DPP-based n-type/ambipolar polymers is also proposed.
Collapse
Affiliation(s)
- Tao Shen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Zhen Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yang Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yunqi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
3
|
Ren S, Zhang W, Wang Z, Yassar A, Chen J, Zeng M, Yi Z. Preparation of Dye Semiconductors via Coupling Polymerization Catalyzed by Two Catalysts and Application to Transistor. Molecules 2023; 29:71. [PMID: 38202654 PMCID: PMC10780007 DOI: 10.3390/molecules29010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Organic dye semiconductors have received increasing attention as the next generation of semiconductors, and one of their potential applications is as a core component of organic transistors. In this study, two novel diketopyrrolopyrrole (DPP) dye core-based materials were designed and separately prepared using Stille coupling reactions under different palladium catalyst conditions. The molecular weights and elemental compositions were tested to demonstrate that both catalysts could be used to successfully prepare materials of this structure, with the main differences being the weight-average molecular weight and the dispersion index. PDPP-2Py-2Tz I with a longer conjugation length exhibited better thermodynamic stability than the counterpart polymer PDPP-2Py-2Tz II. The intrinsic optical properties of the polymers were relatively similar, while the electrochemical tests showed small differences in their energy levels. The polymers obtained with different catalysts displayed similar and moderate electron mobility in transistor devices, while PDPP-2Py-2Tz I possessed a higher switching ratio. Our study provides a comparison of such dye materials under different catalytic conditions and also demonstrates the great potential of dye materials for optoelectronic applications.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Abderrahim Yassar
- LPICM, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Zhengran Yi
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
| |
Collapse
|
4
|
Zhou Y, Zhang W, Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem Sci 2021; 12:6844-6878. [PMID: 34123315 PMCID: PMC8153080 DOI: 10.1039/d1sc01711j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.
Collapse
Affiliation(s)
- Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Fillmore B, Price J, Dean R, Brown AA, Decken A, Eisler S. Accessing the Ene-Imine Motif in 1 H-Isoindole, Thienopyrrole, and Thienopyridine Building Blocks. ACS OMEGA 2020; 5:22914-22925. [PMID: 32954140 PMCID: PMC7495751 DOI: 10.1021/acsomega.0c02282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
A pathway to a range of diverse heterocycles was developed using a nucleophilic cyclization strategy. Lactams and ene-imines are accessed in a few steps from a common precursor, and these moieties are further elaborated to directly provide pyrroles or pyridines with extended conjugation. Reaction conditions are mild, and a broad range of structural types are available within a few steps.
Collapse
|
6
|
Huang K, Huang G, Wang X, Lu H, Zhang G, Qiu L. Air-Stable and High-Performance Unipolar n-Type Conjugated Semiconducting Polymers Prepared by a "Strong Acceptor-Weak Donor" Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17790-17798. [PMID: 32212621 DOI: 10.1021/acsami.0c02322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unipolar n-type conjugated polymer materials with long-term stable electron transport upon direct exposure to the air atmosphere are very challenging to prepare. In this study, three unipolar n-type donor-acceptor (D-A) conjugated polymer semiconductors (abbreviated as PNVB, PBABDFV, and PBAIDV) were successfully developed through a "strong acceptor-weak donor" strategy. The weak electron donation of the donor units in all three polymers successfully lowered the molecular energy levels by the acceptor units that strongly attracted electrons. Cyclic voltammetry demonstrated that all three polymers had low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels near -6.0 and -4.0 eV, respectively. These results were consistent with the density functional theory calculations. The as-prepared polymers were then used to manufacture organic field-effect transistor (OFET) devices in bottom-gate/top-contact (BG/TC) configuration without any packaging protection. As expected, all devices exhibited unipolar electron transport properties. PBABDFV-based devices showed excellent field-effect performance and air stability, beneficial for straight-line molecular chain and closest π-π stacking distance to prevent water vapor and oxygen from diffusion into the active layer. This led to a maximum electron mobility (μe,max) of 0.79 cm2 V-1 s-1 under air conditions. In addition, 0.50 cm2 V-1 s-1 was still maintained after 27 days of storage in ambient environment. The near-ideal transfer curve of the PBABDFV-based OFET device in BG/TC configuration under vacuum was obtained with average mobility reliability factor (rave) reaching 88%.
Collapse
Affiliation(s)
- Kaiqiang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Gang Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Ramakrishna J, Karunakaran L, Paneer SVK, Chennamkulam AM, Subramanian V, Dutta S, Venkatakrishnan P. Conveniently Synthesized Butterfly-Shaped Bitriphenylenes and their Application in Solution-Processed Organic Field-Effect Transistor Devices. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jagarapu Ramakrishna
- Department of Chemistry; Indian Institute of Technology Madras; 600 036 Chennai Tamil Nadu India
| | - Logesh Karunakaran
- Department of Electrical Engineering; Indian Institute of Technology Madras; 600 036 Chennai Tamil Nadu India
| | - Shyam Vinod Kumar Paneer
- Inorganic and Physical Chemistry Laboratory; Central Leather Research Institute, Chennai; 600 020 Chennai Tamil Nadu India
| | - Ajith Mithun Chennamkulam
- Department of Electrical Engineering; Indian Institute of Technology Madras; 600 036 Chennai Tamil Nadu India
| | - Venkatesan Subramanian
- Inorganic and Physical Chemistry Laboratory; Central Leather Research Institute, Chennai; 600 020 Chennai Tamil Nadu India
| | - Soumya Dutta
- Department of Electrical Engineering; Indian Institute of Technology Madras; 600 036 Chennai Tamil Nadu India
| | | |
Collapse
|
8
|
Khatua R, Debata S, Sahu S. Computational characterization of N-type characteristics and optoelectronic properties in air-stable pyromellitic diimide derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj00811g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical investigation of charge transport and optoelectronic properties of the pyromellitic diimide derivatives; BPyDI, BPyDI1, BPIT, BPPIT, and BPPyDI using DFT methodology.
Collapse
Affiliation(s)
- Rudranarayan Khatua
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Suryakanti Debata
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Sridhar Sahu
- High Performance Computing Lab
- Department of Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| |
Collapse
|
9
|
Synthesis and characterization of new N-{4,6-bis[2-(het)arylvinyl]pyrimidin-2-yl}-substituted polycyclic aromatic imides. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2614-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Sun H, Wang L, Wang Y, Guo X. Imide‐Functionalized Polymer Semiconductors. Chemistry 2018; 25:87-105. [DOI: 10.1002/chem.201803605] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/30/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Huiliang Sun
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & DevicesSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Lei Wang
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Yingfeng Wang
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|