1
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Yang Z, Arnoux M, Hazelard D, Hughes OR, Nabarro J, Whitwood AC, Fascione MA, Spicer CD, Compain P, Unsworth WP. Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams. Org Biomol Chem 2024; 22:2985-2991. [PMID: 38526035 DOI: 10.1039/d4ob00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
New methods are described that expand the scope of the Successive Ring Expansion (SuRE) with respect to synthetically challenging lactams. A protocol has been developed for use with 'unreactive' lactams, enabling SuRE reactions to be performed on subsrates that fail under previously established conditions. Ring expansion is also demonstarted on 'reactive' lactams derived from iminosugars for the first time. The new SuRE methods were used to prepare a diverse array of medium-sized and macrocyclic lactams and lactones, which were evaluted in an anti-bacterial assay against E. coli BW25113WT.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Marion Arnoux
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Owen R Hughes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Joe Nabarro
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Christopher D Spicer
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Zalessky I, Wootton JM, Tam JKF, Spurling DE, Glover-Humphreys WC, Donald JR, Orukotan WE, Duff LC, Knapper BJ, Whitwood AC, Tanner TFN, Miah AH, Lynam JM, Unsworth WP. A Modular Strategy for the Synthesis of Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion Cascade Reactions. J Am Chem Soc 2024; 146:5702-5711. [PMID: 38372651 PMCID: PMC10910531 DOI: 10.1021/jacs.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Macrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided. A modular synthetic approach has been developed to facilitate the simple assembly of the requisite linear precursors, which can then be converted into an extremely broad range of functionalized macrocycles and medium-sized rings using one of nine CRE protocols.
Collapse
Affiliation(s)
- Illya Zalessky
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jack M. Wootton
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jerry K. F. Tam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | - James R. Donald
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Will E. Orukotan
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Lee C. Duff
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Ben J. Knapper
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | | | - Jason M. Lynam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | |
Collapse
|
4
|
Orukotan WE, Palate KY, Pogrányi B, Bobinski P, Epton RG, Duff L, Whitwood AC, Grogan G, Lynam JM, Unsworth WP. Divergent Cascade Ring-Expansion Reactions of Acryloyl Imides. Chemistry 2024; 30:e202303270. [PMID: 37987097 DOI: 10.1002/chem.202303270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
Macrocyclic and medium-sized ring ketones, lactones and lactams can all be made from common acryloyl imide starting materials through divergent, one-pot cascade ring-expansion reactions. Following either conjugate addition with an amine or nitromethane, or osmium(VIII)-catalysed dihydoxylation, rearrangement through a four-atom ring expansion takes place spontaneously to form the ring expanded products. A second ring expansion can also be performed following a second iteration of imide formation and alkene functionalisation/ring expansion. In the dihydroxylation series, three- or four-atom ring expansion can be performed selectively, depending on whether the reaction is under kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Will E Orukotan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Balázs Pogrányi
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Philipp Bobinski
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Lee Duff
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
5
|
Liu Z, Zhou L, Liu WH. Amide Skeletal Elongation via Amino Acid Insertion. Chemistry 2023; 29:e202301729. [PMID: 37259820 DOI: 10.1002/chem.202301729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
Amide derivatization is useful to access valuable organic compounds considering the ready availability of molecules containing amide functionality. Current methods to derivatize amide mainly focus on the synthesis of carbonyl-containing compounds and amines. Incorporating both parts of the initial amide into the new derivatives is rare. Herein, we describe a simple and practical amide derivatization through amino acid insertion to prepare more complex amides. This insertion is applicable to a wide range of amino acids and more importantly, the chiral information is completely conserved during the insertion. Comparison of this insertion strategy with conventional amide synthesis demonstrates the synthetic advantages of this new protocol.
Collapse
Affiliation(s)
- Zhengqiang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Yang Z, Zalessky I, Epton RG, Whitwood AC, Lynam JM, Unsworth WP. Ring Expansion Strategies for the Synthesis of Medium Sized Ring and Macrocyclic Sulfonamides. Angew Chem Int Ed Engl 2023; 62:e202217178. [PMID: 36716014 DOI: 10.1002/anie.202217178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Two new ring expansion strategies are reported for the synthesis of medium sized ring and macrocyclic sulfonamides. Both methods can be performed without using classical protecting groups, with the key ring expansion step initiated by nitro reduction and amine conjugate addition respectively. Each method can be used to make diversely functionalised cyclic sulfonamides in good to excellent yields, in a range of ring sizes. The ring size dependency of the synthetic reactions is in good agreement with the outcomes modelled by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Illya Zalessky
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
7
|
Lavit K, Sapegin A, Linnik S, Ryazantsev M, Krasavin M. Steric Push Towards the [n+3] Hydrated Imidazoline Ring Expansion (HIRE) of Dibenzo[1.4]oxazepines and Thiazepines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ksenia Lavit
- Saint Petersburg State University: Sankt-peterburgskij gosudarstvennyj universitet Chemistry RUSSIAN FEDERATION
| | - Alexander Sapegin
- Saint Petersburg State University Institute of Chemistry: Sankt-Peterburgskij gosudarstvennyj universitet Institut himii Chemistry RUSSIAN FEDERATION
| | - Stanislav Linnik
- Saint Petersburg Academic University: Sankt-Peterburgskij nacional'nyj issledovatel'skij Akademiceskij universitet Rossijskoj akademii nauk Nanobiotechnology RUSSIAN FEDERATION
| | - Mikhail Ryazantsev
- Saint Petersburg Academic University: Sankt-Peterburgskij nacional'nyj issledovatel'skij Akademiceskij universitet Rossijskoj akademii nauk Nanobiotechnology RUSSIAN FEDERATION
| | - Mikhail Krasavin
- Saint Petersburg State University Chemistry 26 Universitetskyi Prospekt 198504 Peterhof RUSSIAN FEDERATION
| |
Collapse
|
8
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
9
|
Paulisch TO, Mai LA, Strieth‐Kalthoff F, James MJ, Henkel C, Guldi DM, Glorius F. Dynamische kinetische Sensibilisierung von β‐Dicarbonyl‐verbindungen – Zugang zu mittelgroßen Ringen durch eine De‐Mayo‐artige Ringerweiterung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tiffany O. Paulisch
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Lukas A. Mai
- Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Felix Strieth‐Kalthoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Michael J. James
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Henkel
- Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Dirk M. Guldi
- Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
10
|
Palate KY, Yang Z, Whitwood AC, Unsworth WP. Synthesis of medium-ring lactams and macrocyclic peptide mimetics via conjugate addition/ring expansion cascade reactions. RSC Chem Biol 2022; 3:334-340. [PMID: 35359493 PMCID: PMC8905531 DOI: 10.1039/d1cb00245g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
A novel conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides. The reactions are simple to perform, generally high yielding, and very broad in scope, especially with respect to the primary amine component. CARE reactions can also be performed iteratively, enabling β-peptoid-based macrocyclic peptide mimetics to be ‘grown’ via well controlled, sequential 4-atom ring expansion reactions, with the incorporation of varied functionalised amines during each iteration. A conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides.![]()
Collapse
Affiliation(s)
- Kleopas Y Palate
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Zhongzhen Yang
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| |
Collapse
|
11
|
Paulisch TO, Mai LA, Strieth-Kalthoff F, James MJ, Henkel C, Guldi DM, Glorius F. Dynamic Kinetic Sensitization of β-Dicarbonyl Compounds-Access to Medium-Sized Rings by De Mayo-Type Ring Expansion. Angew Chem Int Ed Engl 2021; 61:e202112695. [PMID: 34818464 DOI: 10.1002/anie.202112695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Herein, we present a photocatalyzed two-carbon ring expansion of β-dicarbonyl compounds with unactivated olefins that provides facile access to medium-sized rings. Selective sensitization of the substoichiometric enol tautomer enables reactivity of substrates incompatible with the classical De Mayo reaction conditions. Key to success is the identification of the metal-based sensitizer fac-[Ir(CF3 -pmb)3 ], which can be excited using common near-visible LEDs, and possesses a high triplet excited state energy of 73.3 kcal mol-1 . This exactly falls in the range between the triplet energies of the enol and keto tautomer, thereby enabling a dynamic kinetic sensitization. Demonstrating the applicability of fac-[Ir(CF3 -pmb)3 ] as a photocatalyst in organic synthesis for the first time, we describe a two-step photocycloaddition-ring-opening cascade with β-ketoesters, -diketones, and -ketoamides. The mechanism has been corroborated by time-resolved spectroscopy, as well as further experimental and computational studies.
Collapse
Affiliation(s)
- Tiffany O Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Lukas A Mai
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Felix Strieth-Kalthoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Michael J James
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Christian Henkel
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
12
|
Palate KY, Epton RG, Whitwood AC, Lynam JM, Unsworth WP. Synthesis of macrocyclic and medium-sized ring thiolactones via the ring expansion of lactams. Org Biomol Chem 2021; 19:1404-1411. [PMID: 33491715 DOI: 10.1039/d0ob02502j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A side chain insertion method for the ring expansion of lactams into macrocyclic thiolactones is reported, that can also be incorporated into Successive Ring Expansion (SuRE) sequences. The reactions are less thermodynamically favourable than the analogous lactam- and lactone-forming ring expansion processes (with this notion supported by DFT data), but nonetheless, three complementary protecting group strategies have been developed to enable this challenging transformation to be achieved.
Collapse
Affiliation(s)
- Kleopas Y Palate
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Ryan G Epton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
13
|
Shang J, Thombare VJ, Charron CL, Wille U, Hutton CA. Ring Expansion of Thiolactams via Imide Intermediates: An Amino Acid Insertion Strategy. Chemistry 2021; 27:1620-1625. [PMID: 33289186 DOI: 10.1002/chem.202005035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/22/2022]
Abstract
The AgI -promoted reaction of thiolactams with N-Boc amino acids yields an N-(α-aminoacyl) lactam that can rearrange through an acyl transfer process. Boc-deprotection results in convergence to the ring-expanded adduct, thereby facilitating an overall insertion of an amino acid into the thioamide bond to generate medium-sized heterocycles. Application to the site-specific insertion of amino acids into cyclic peptides is demonstrated.
Collapse
Affiliation(s)
- Jing Shang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Varsha J Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Carlie L Charron
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
14
|
Lin CY, Chakraborty S, Wong CW, Tai DF. Controversy of Peptide Cyclization from Tripeptide. Molecules 2021; 26:molecules26020389. [PMID: 33451079 PMCID: PMC7828492 DOI: 10.3390/molecules26020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
The present investigation reports an attempt to synthesize naturally occurring α-cyclic tripeptide cyclo(Gly-l-Pro-l-Glu) 1, [cyclo(GPE)], previously isolated from the Ruegeria strain of bacteria with marine sponge Suberites domuncula. Three linear precursors, Boc-GPE(OBn)2, Boc-PE(OBn)G and Boc-E(OBn)GP, were synthesized using a solution phase peptide coupling protocol. Although cyclo(GPE) 1 was our original target, all precursors were dimerized and cyclized at 0 °C with high dilution to form corresponding α-cyclic hexapeptide, cyclo(GPE(OBn))27, which was then converted to cyclic hexapeptide cyclo(GPE)22. Cyclization at higher temperature induced racemization and gave cyclic tripeptide cyclo(GPDE(OBn)) 9. Structure characteristics of the newly synthesized cyclopeptides were determined using 1H-NMR, 13C-NMR and high-resolution mass spectrometry. The chemical shift values of carbonyls of 2 and 7 are larger than 170 ppm, indicating the formation of a cyclic hexapeptide.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (C.-Y.L.); (D.-F.T.); Tel.: +886-3-211-8800 (ext.3865) (C.-Y.L.)
| | - Subrata Chakraborty
- Department of Chemistry, National Dong Hwa University, Hualien 974003, Taiwan; (S.C.); (C.-W.W.)
| | - Chia-Wei Wong
- Department of Chemistry, National Dong Hwa University, Hualien 974003, Taiwan; (S.C.); (C.-W.W.)
| | - Dar-Fu Tai
- Department of Life Science, National Dong Hwa University, Hualien 974003, Taiwan
- Correspondence: (C.-Y.L.); (D.-F.T.); Tel.: +886-3-211-8800 (ext.3865) (C.-Y.L.)
| |
Collapse
|
15
|
Godin É, Nguyen Thanh S, Guerrero-Morales J, Santandrea J, Caron A, Minozzi C, Beaucage N, Rey B, Morency M, Abel-Snape X, Collins SK. Synthesis and Diversification of Macrocyclic Alkynediyl Sulfide Peptides. Chemistry 2020; 26:14575-14579. [PMID: 32886838 DOI: 10.1002/chem.202003655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The synthesis of rare macrocyclic alkynediyl sulfides by a Cu-catalyzed Csp -S cross-coupling is presented. The catalytic protocol (Cu(MeCN)4 PF6 /dtbbpy) promotes macrocyclization of peptides, dipeptides and tripeptides at ambient temperature (14 examples, 23→73 % yields) via thiols and bromoalkynes, and is chemoselective with regards to terminal alkynes. Importantly, the underexplored alkynediyl sulfide functionality incorporates a rigidifying structural element and opens new opportunities for diversification of macrocyclic frameworks through S oxidation, halide addition and azide-alkyne cycloaddition chemistries to integrate sulfones, halides or valuable fluorophores (7 examples, 37→92 % yields).
Collapse
Affiliation(s)
- Éric Godin
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Sacha Nguyen Thanh
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Javier Guerrero-Morales
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Jeffrey Santandrea
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Antoine Caron
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Clémentine Minozzi
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Noémie Beaucage
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Bastien Rey
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Xavier Abel-Snape
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Shawn K Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| |
Collapse
|
16
|
Lawer A, Epton RG, Stephens TC, Palate KY, Lodi M, Marotte E, Lamb KJ, Sangha JK, Lynam JM, Unsworth WP. Evaluating the Viability of Successive Ring-Expansions Based on Amino Acid and Hydroxyacid Side-Chain Insertion. Chemistry 2020; 26:12674-12683. [PMID: 32432817 PMCID: PMC7589337 DOI: 10.1002/chem.202002164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/20/2023]
Abstract
The outcome of ring-expansion reactions based on amino/hydroxyacid side-chain insertion is strongly dependent on ring size. This manuscript, which builds upon our previous work on Successive Ring Expansion (SuRE) methods, details efforts to better define the scope and limitations of these reactions on lactam and β-ketoester ring systems with respect to ring size and additional functionality. The synthetic results provide clear guidelines as to which substrate classes are more likely to be successful and are supported by computational results, using a density functional theory (DFT) approach. Calculating the relative Gibbs free energies of the three isomeric species that are formed reversibly during ring expansion enables the viability of new synthetic reactions to be correctly predicted in most cases. The new synthetic and computational results are expected to support the design of new lactam- and β-ketoester-based ring-expansion reactions.
Collapse
Affiliation(s)
- Aggie Lawer
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Ryan G. Epton
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | - Mahendar Lodi
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Emilie Marotte
- ENSICAEN6 Boulevard Maréchal Juin, CS 4505314050Caen Cedex 04France
| | - Katie J. Lamb
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | | |
Collapse
|
17
|
Apte CN, Diaz DB, Adrianov T, Yudin AK. Grafting Bis(heteroaryl) Motifs into Ring Structures. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chirag N. Apte
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Diego B. Diaz
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Timur Adrianov
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| |
Collapse
|
18
|
Grintsevich S, Sapegin A, Reutskaya E, Peintner S, Erdélyi M, Krasavin M. An Alternative Approach to the Hydrated Imidazoline Ring Expansion (HIRE) of Diarene‐Fused [1.4]Oxazepines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergey Grintsevich
- Institute of Chemistry Saint Petersburg State University 199034 Saint Petersburg Russia
| | - Alexander Sapegin
- Institute of Chemistry Saint Petersburg State University 199034 Saint Petersburg Russia
| | - Elena Reutskaya
- Institute of Chemistry Saint Petersburg State University 199034 Saint Petersburg Russia
| | - Stefan Peintner
- Department of Chemistry BMC Uppsala University 751 23 Uppsala Sweden
| | - Máté Erdélyi
- Department of Chemistry BMC Uppsala University 751 23 Uppsala Sweden
| | - Mikhail Krasavin
- Institute of Chemistry Saint Petersburg State University 199034 Saint Petersburg Russia
| |
Collapse
|
19
|
Yuan Y, Guo Z, Mu Y, Wang Y, Xu M, Li Y. Synthesis of Spiro[5.n (n=6–8)]heterocycles through Successive Ring‐Expansion/Indole C‐2 Functionalization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yang Yuan
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Zixia Guo
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Yuanyang Mu
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Ye Wang
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Murong Xu
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Yanzhong Li
- School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 People's Republic of China
| |
Collapse
|
20
|
Clarke AK, Unsworth WP. A happy medium: the synthesis of medicinally important medium-sized rings via ring expansion. Chem Sci 2020; 11:2876-2881. [PMID: 34122787 PMCID: PMC8152702 DOI: 10.1039/d0sc00568a] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Medium-sized rings have much promise in medicinal chemistry, but are difficult to make using direct cyclisation methods. In this minireview, we highlight the value of ring expansion strategies to address this long-standing synthetic challenge. We have drawn on recent progress (post 2013) to highlight the key reaction design features that enable successful ‘normal-to-medium’ ring expansion for the synthesis of these medicinally important molecular frameworks, that are currently under-represented in compound screening collections and marketed drugs in view of their challenging syntheses. Ring expansion strategies are ideally suited to make synthetically challenging, medium-sized rings with much potential in medicinal chemistry.![]()
Collapse
Affiliation(s)
- Aimee K Clarke
- Department of Chemistry, University of York York YO10 5DD UK
| | | |
Collapse
|
21
|
Trapping rhodium vinylcarbenoids with aminochalcones for the synthesis of medium-sized azacycles. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Liang Y, Pan JL, Sun LH, Ma JM, Jiang H, Li ZL. Alternating Sequence Control for Poly(ester amide)s by Organocatalyzed Ring-Opening Polymerization. Macromol Rapid Commun 2019; 40:e1900435. [PMID: 31596528 DOI: 10.1002/marc.201900435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Sequence-controlled polymerization is the forefront of polymer chemistry. Herein, the feasibility of sequence regulation by using organocatalyzed ring-opening polymerization (ROP) is demonstrated. In particular, ring expansion strategy is employed to synthesize pre-organized monomers 1 and 2. ROP is conducted by using 1,5,7-triazabicyclo[4.4.0]dec-5-ene and benzyl alcohol as the catalyst and initiator, respectively. Poly(ester amide)s (PEAs) P1-P3 comprising glycolic acid, lactic acid, and 7-aminoheptanoic acid units are obtained in high molecular weights and good yields. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry results verify the microstructural integrity of P1 and P2. Differential scanning calorimetry results show that PEA without methyl branches is crystalline. Moreover, thermal stability, surface wettability, and degradation profiles of P1-P3 are also investigated.
Collapse
Affiliation(s)
- Yang Liang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jun-Lin Pan
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lin-Hao Sun
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Mei Ma
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zi-Long Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
23
|
Lawer A, Rossi‐Ashton JA, Stephens TC, Challis BJ, Epton RG, Lynam JM, Unsworth WP. Internal Nucleophilic Catalyst Mediated Cyclisation/Ring Expansion Cascades for the Synthesis of Medium‐Sized Lactones and Lactams. Angew Chem Int Ed Engl 2019; 58:13942-13947. [DOI: 10.1002/anie.201907206] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/23/2019] [Indexed: 12/12/2022]
|
24
|
Lawer A, Rossi‐Ashton JA, Stephens TC, Challis BJ, Epton RG, Lynam JM, Unsworth WP. Internal Nucleophilic Catalyst Mediated Cyclisation/Ring Expansion Cascades for the Synthesis of Medium‐Sized Lactones and Lactams. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Otawa Y, Mori K. Construction of seven- and eight-membered carbocycles by Lewis acid catalyzed C(sp3)–H bond functionalization. Chem Commun (Camb) 2019; 55:13856-13859. [DOI: 10.1039/c9cc08074k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concise construction of seven- or eight-membered carbocycles was accomplished by Lewis acid catalyzed C(sp3)–H bond functionalization.
Collapse
Affiliation(s)
- Yuna Otawa
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
| | - Keiji Mori
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
| |
Collapse
|
26
|
Reutskaya E, Osipyan A, Sapegin A, Novikov AS, Krasavin M. Rethinking Hydrolytic Imidazoline Ring Expansion: A Common Approach to the Preparation of Medium-Sized Rings via Side-Chain Insertion into [1.4]Oxa- and [1.4]Thiazepinone Scaffolds. J Org Chem 2018; 84:1693-1705. [DOI: 10.1021/acs.joc.8b02805] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Reutskaya
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Angelina Osipyan
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Sapegin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | | | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
27
|
Liu Z, Hu X. Palladium‐Catalyzed Propargylic [n+2] Cycloaddition: An Efficient Strategy for Construction of Benzo‐Fused Medium‐Sized Heterocycles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Ting Liu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Ping Hu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
| |
Collapse
|
28
|
Zhou Y, Wei YL, Rodriguez J, Coquerel Y. Enantioselective Organocatalytic Four-Atom Ring Expansion of Cyclobutanones: Synthesis of Benzazocinones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yirong Zhou
- Aix Marseille Université; CNRS; Centrale Marseille, ISM2; 13397 Marseille France
- Key Laboratory of Functional Small Organic Molecules Ministry of Education; Jiangxi Normal University; 330022 Nanchang China
| | - Yun-Long Wei
- Aix Marseille Université; CNRS; Centrale Marseille, ISM2; 13397 Marseille France
| | - Jean Rodriguez
- Aix Marseille Université; CNRS; Centrale Marseille, ISM2; 13397 Marseille France
| | - Yoann Coquerel
- Aix Marseille Université; CNRS; Centrale Marseille, ISM2; 13397 Marseille France
| |
Collapse
|
29
|
Zhou Y, Wei YL, Rodriguez J, Coquerel Y. Enantioselective Organocatalytic Four-Atom Ring Expansion of Cyclobutanones: Synthesis of Benzazocinones. Angew Chem Int Ed Engl 2018; 58:456-460. [PMID: 30398303 DOI: 10.1002/anie.201810184] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Indexed: 01/04/2023]
Abstract
An enantioselective Michael addition- four-atom ring expansion cascade reaction involving cyclobutanones activated by a N-aryl secondary amide group and ortho-amino nitrostyrenes has been developed for the preparation of functionalized eight-membered benzolactams using bifunctional aminocatalysts. Taking advantage of the secondary amide activating group, the eight-membered cyclic products could be further rearranged into their six-membered isomers having a glutarimide core under base catalysis conditions without erosion of optical purity, featuring an overall ring expansion- ring contraction strategy.
Collapse
Affiliation(s)
- Yirong Zhou
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, 13397, Marseille, France.,Key Laboratory of Functional Small Organic Molecules Ministry of Education, Jiangxi Normal University, 330022, Nanchang, China
| | - Yun-Long Wei
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, 13397, Marseille, France
| | - Yoann Coquerel
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2, 13397, Marseille, France
| |
Collapse
|
30
|
Stephens TC, Lawer A, French T, Unsworth WP. Iterative Assembly of Macrocyclic Lactones using Successive Ring Expansion Reactions. Chemistry 2018; 24:13947-13953. [PMID: 30011360 PMCID: PMC6334170 DOI: 10.1002/chem.201803064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Indexed: 12/27/2022]
Abstract
Macrocyclic lactones can be prepared from lactams and hydroxyacid derivatives via an efficient 3- or 4-atom iterative ring expansion protocol. The products can also be expanded using amino acid-based linear fragments, meaning that macrocycles with precise sequences of hydroxy- and amino acids can be assembled in high yields by "growing" them from smaller rings, using a simple procedure in which high dilution is not required. The method should significantly expedite the practical synthesis of diverse nitrogen containing macrolide frameworks.
Collapse
|
31
|
Guney T, Wenderski TA, Boudreau MW, Tan DS. Synthesis of Benzannulated Medium-ring Lactams via a Tandem Oxidative Dearomatization-Ring Expansion Reaction. Chemistry 2018; 24:13150-13157. [PMID: 29936701 PMCID: PMC6242278 DOI: 10.1002/chem.201802880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Medium-ring natural products exhibit diverse biological activities but such scaffolds are underrepresented in probe and drug discovery efforts due to the limitations of classical macrocyclization reactions. We report herein a tandem oxidative dearomatization-ring-expanding rearomatization (ODRE) reaction that generates benzannulated medium-ring lactams directly from simple bicyclic substrates. The reaction accommodates diverse aryl substrates (haloarenes, aryl ethers, aryl amides, heterocycles) and strategic incorporation of a bridgehead alcohol generates a versatile ketone moiety in the products amenable to downstream modifications. Cheminformatic analysis indicates that these medium rings access regions of chemical space that overlap with related natural products and are distinct from synthetic drugs, setting the stage for their use in discovery screening against novel biological targets.
Collapse
Affiliation(s)
- Tezcan Guney
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Todd A. Wenderski
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
| | - Matthew W. Boudreau
- M. W. Boudreau, Gerstner Sloan Kettering Summer
Undergraduate Research Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, Box 422, New York, New York, 10065, USA
| | - Derek S. Tan
- Dr. T. Guney, Dr. T. A. W enderski, Prof. Dr. D. S. Tan,
Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
Center, 1275 York Avenue, Box 422, New York, New York, 10065, USA
- Prof. Dr. D. S. Tan, Tri-Institutional Research Program,
Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New
York, 10065, USA
| |
Collapse
|
32
|
Slough DP, McHugh SM, Lin YS. Understanding and designing head-to-tail cyclic peptides. Biopolymers 2018; 109:e23113. [PMID: 29528114 PMCID: PMC6135719 DOI: 10.1002/bip.23113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023]
Abstract
Cyclic peptides (CPs) are an exciting class of molecules with a variety of applications. However, design strategies for CP therapeutics, for example, are generally limited by a poor understanding of their sequence-structure relationships. This knowledge gap often leads to a trial-and-error approach for designing CPs for a specific purpose, which is both costly and time-consuming. Herein, we describe the current experimental and computational efforts in understanding and designing head-to-tail CPs along with their respective challenges. In addition, we provide several future directions in the field of computational CP design to improve its accuracy, efficiency and applicability. These advances, combined with experimental techniques, shall ultimately provide a better understanding of these interesting molecules and a reliable working platform to rationally design CPs with desired characteristics.
Collapse
Affiliation(s)
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, United States
| |
Collapse
|
33
|
Hill JE, Matlock JV, Lefebvre Q, Cooper KG, Clayden J. Consecutive Ring Expansion and Contraction for the Synthesis of 1-Aryl Tetrahydroisoquinolines and Tetrahydrobenzazepines from Readily Available Heterocyclic Precursors. Angew Chem Int Ed Engl 2018. [PMID: 29539221 DOI: 10.1002/anie.201802188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tetrahydroisoquinolines and tetrahydrobenzazepines were prepared by acid-promoted ring contraction of cyclic ureas, which were themselves formed by ring expansion of indolines and tetrahydroquinolines. The consequent overall one-carbon insertion reaction gives these 6- and 7-membered heterocyclic scaffolds in three steps from readily available precursors. Other ring sizes may be formed by an alternative elimination reaction of bicyclic structures. Scalability of the method was demonstrated by operating it in a flow system.
Collapse
Affiliation(s)
- Jessica E Hill
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Johnathan V Matlock
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Quentin Lefebvre
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
34
|
Hill JE, Matlock JV, Lefebvre Q, Cooper KG, Clayden J. Consecutive Ring Expansion and Contraction for the Synthesis of 1-Aryl Tetrahydroisoquinolines and Tetrahydrobenzazepines from Readily Available Heterocyclic Precursors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica E. Hill
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | | - Quentin Lefebvre
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
35
|
Wang YN, Yang LC, Rong ZQ, Liu TL, Liu R, Zhao Y. Pd-Catalyzed Enantioselective [6+4] Cycloaddition of Vinyl Oxetanes with Azadienes to Access Ten-Membered Heterocycles. Angew Chem Int Ed Engl 2018; 57:1596-1600. [DOI: 10.1002/anie.201711648] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ya-Nong Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Li-Cheng Yang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zi-Qiang Rong
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Tang-Lin Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Ruoyang Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
36
|
Wang YN, Yang LC, Rong ZQ, Liu TL, Liu R, Zhao Y. Pd-Catalyzed Enantioselective [6+4] Cycloaddition of Vinyl Oxetanes with Azadienes to Access Ten-Membered Heterocycles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711648] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ya-Nong Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Li-Cheng Yang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zi-Qiang Rong
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Tang-Lin Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Ruoyang Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
37
|
Wang S, An XD, Li SS, Liu X, Liu Q, Xiao J. Hydride transfer initiated ring expansion of pyrrolidines toward highly functionalized tetrahydro-1-benzazepines. Chem Commun (Camb) 2018; 54:13833-13836. [DOI: 10.1039/c8cc08238c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of ring expansion from a five-membered nitrogen-containing ring to a seven-membered heterocyclic ring has been developed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Province Key Laboratory of Applied Mycology
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiao-De An
- Shandong Province Key Laboratory of Applied Mycology
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shuai-Shuai Li
- Shandong Province Key Laboratory of Applied Mycology
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xicheng Liu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Qing Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
38
|
Costil R, Lefebvre Q, Clayden J. Medium-Sized-Ring Analogues of Dibenzodiazepines by a Conformationally Induced Smiles Ring Expansion. Angew Chem Int Ed Engl 2017; 56:14602-14606. [DOI: 10.1002/anie.201708991] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Romain Costil
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| |
Collapse
|
39
|
Costil R, Lefebvre Q, Clayden J. Medium-Sized-Ring Analogues of Dibenzodiazepines by a Conformationally Induced Smiles Ring Expansion. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Romain Costil
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| |
Collapse
|