1
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Jouvet C, Miyazaki M, Fujii M. Revealing the role of excited state proton transfer (ESPT) in excited state hydrogen transfer (ESHT): systematic study in phenol-(NH 3) n clusters. Chem Sci 2021; 12:3836-3856. [PMID: 34163653 PMCID: PMC8179502 DOI: 10.1039/d0sc06877b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Excited State Hydrogen Transfer (ESHT), proposed at the end of the 20th century by the corresponding authors, has been observed in many neutral or protonated molecules and become a new paradigm to understand excited state dynamics/photochemistry of aromatic molecules. For example, a significant number of photoinduced proton-transfer reactions from X–H bonds have been re-defined as ESHT, including those of phenol, indole, tryptophan, aromatic amino acid cations and so on. Photo-protection mechanisms of biomolecules, such as isolated nucleic acids of DNA, are also discussed in terms of ESHT. Therefore, a systematic and up-to-date description of ESHT mechanism is important for researchers in chemistry, biology and related fields. In this review, we will present a general model of ESHT which unifies the excited state proton transfer (ESPT) and the ESHT mechanisms and reveals the hidden role of ESPT in controlling the reaction rate of ESHT. For this purpose, we give an overview of experimental and theoretical work on the excited state dynamics of phenol–(NH3)n clusters and related molecular systems. The dynamics has a significant dependence on the number of solvent molecules in the molecular cluster. Three-color picosecond time-resolved IR/near IR spectroscopy has revealed that ESHT becomes an electron transfer followed by a proton transfer in highly solvated clusters. The systematic change from ESHT to decoupled electron/proton transfer according to the number of solvent molecules is rationalized by a general model of ESHT including the role of ESPT. A general model of excited state hydrogen transfer (ESHT) which unifies ESHT and the excited state proton transfer (ESPT) is presented from experimental and theoretical works on phenol–(NH3)n. The hidden role of ESPT is revealed.![]()
Collapse
Affiliation(s)
- Christophe Jouvet
- CNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM), UMR 7345 13397 Marseille Cedex France .,World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Mitsuhiko Miyazaki
- Natural Science Division, Faculty of Core Research, Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku Tokyo 112-8610 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- World Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-15, Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
3
|
Tachikawa H, Iyama T. Proton Transfer Reaction Rates in Phenol-Ammonia Cluster Cation. J Phys Chem A 2020; 124:7893-7900. [PMID: 32882138 DOI: 10.1021/acs.jpca.0c05688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proton transfer (PT) in an interaction system of a hydroxyl-amino group (OH-NH) plays a crucial role in photoinduced DNA and enzyme damage. A phenol-ammonia cluster is a prototype of an OH-NH interaction and is sometimes used as a DNA model. In the present study, the reaction dynamics of phenol-ammonia cluster cations, [PhOH-(NH3)n]+ (n = 1-5), following ionization of the neutral parent clusters, were investigated using a direct ab initio molecular dynamics (AIMD) method. In all clusters, PTs from PhOH+ to (NH3)n were found postionization, the reaction of which is expressed as PhOH+-(NH3)n → PhO-H+(NH3)n. The time of the PT was calculated as 43 (n = 1), 26 (n = 2), and 13 fs (n = 3-5), suggesting that the rate of PT increases with an increase in n and is saturated at n = 3-5. The difference in the PT rate originates strongly from the proton affinity of the (NH3)n cluster. In the case of n = 3-5, a second PT was found, the reaction of which is expressed as PhO-H+(NH3)n → PhO-NH3-H+(NH3)n-1, and a third PT occurred at n = 4 and 5. The time of the PT was calculated as 10-13 (first PT), 80-100 (second PT), and 150-200 fs (third PT) in the case of larger clusters (n = 4 and 5). The reaction mechanism based on the theoretical results is discussed herein.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tetsuji Iyama
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
4
|
Ishiuchi SI, Kamizori J, Tsuji N, Sakai M, Miyazaki M, Dedonder C, Jouvet C, Fujii M. Excited state hydrogen transfer dynamics in phenol-(NH 3) 2 studied by picosecond UV-near IR-UV time-resolved spectroscopy. Phys Chem Chem Phys 2020; 22:5740-5748. [PMID: 32104812 DOI: 10.1039/c9cp06369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-evolutions of excited state hydrogen transfer (ESHT) in phenol (PhOH)-(NH3)2 clusters have been measured by three-color picosecond (ps) ultraviolet (UV)-near infrared (NIR)-UV pump-probe ion dip spectroscopy. The formation of a reaction product, ˙NH4NH3, is detected by its NIR absorption due to a 3p-3s Rydberg transition. The ESHT reactions from all of the vibronic levels show biexponential time-evolutions, even from the S1 origin. Based on the biexponential time-evolution, it is suggested that there is a second reaction path via the triplet πσ* state, which gives the slow component. The fast time-evolution of the ESHT reaction from the S1 origin is measured to be 268 ps, which is 10-times slower than that in PhOH-(NH3)3, and a higher barrier between the ππ* and reactive πσ* states is suggested. The size dependence of the ESHT reaction rates is discussed based on a potential distortion due to the proton transferred state in the ππ* potential surface.
Collapse
Affiliation(s)
- Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Biswas S, Bhattacharya I, Chakraborty T. Identification of an Emitting Metastable State of p-Fluorophenol-Ammonia 1:2 Complex by Laser-Induced Fluorescence Spectroscopy. J Phys Chem A 2019; 123:10563-10570. [PMID: 31714082 DOI: 10.1021/acs.jpca.9b07958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have demonstrated here, for the first time to our knowledge, the formation of an emitting metastable species upon lowest electronic excitation (S1) of a hydrogen-bonded 1:2 complex of para-fluorophenol (pFP) with ammonia (NH3), which is known to be one of the smallest reactive complexes to undergo excited state H-atom transfer (HAT) reaction to produce •NH4(NH3) radical fragment. The emission spectrum of the species is characterized to be red-shifted, broad, and structureless. From the viewpoint of energy balance, an excited state proton transfer (ESPT) is unfavorable, but according to predicted electronic structure parameters, the metastable state species could be stabilized by charge transfer (CT) interaction at the hydrogen-bonded geometry of the complex. We propose that this species could act as an intermediate to the HAT process in the excited state. The observation of such a state could be valuable to understand the complex dynamics of similar events in biologically relevant systems.
Collapse
Affiliation(s)
- Souvick Biswas
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| | - Indrani Bhattacharya
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| | - Tapas Chakraborty
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| |
Collapse
|
6
|
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019; 120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
7
|
Sandler I, Nogueira JJ, González L. Solvent reorganization triggers photo-induced solvated electron generation in phenol. Phys Chem Chem Phys 2019; 21:14261-14269. [DOI: 10.1039/c8cp06656f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge-transfer states with large electron–hole separation, correlating to the formation of solvated electrons, are found below the maximum of the absorbing ππ* band of solvated phenol.
Collapse
Affiliation(s)
- Isolde Sandler
- Institute of Theoretical Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Juan J. Nogueira
- Institute of Theoretical Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Leticia González
- Institute of Theoretical Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| |
Collapse
|
8
|
Miyazaki M, Washio N, Fujii M. Electron-proton transfer mechanism of excited-state hydrogen transfer in phenol−(NH3) (n = 5) studied by delayed ionization detected femtosecond time-resolved NIR spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|