1
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
2
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
3
|
Tashiro K, Takei T, Fracaroli AM, Ohtsu H, Kawano M, Ohtsu H, Hashizume D. Gelation of a π-Decorated Glutamate as a Homochiral Selective Self-assembly to Emerge Macroscopic Chiral Symmetry Breaking. Chem Asian J 2022; 17:e202200230. [PMID: 35332668 DOI: 10.1002/asia.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Indexed: 11/10/2022]
Abstract
An N -Fmoc and C -tBu-protected glutamate ( 1 ) bearing a phenanthrene moiety at the side residue crystalizes and gels to afford hetero- and homochiral assemblies, respectively, depending on its optical purity or solvent. When a non-stoichiometric mixture of enantiomers of 1 in acetonitrile was treated with the conditions that leave a mixture of gel and supernatant, it exhibited the selfdisproportionation of enantiomers with an enrichment of the major enantiomer in the gel. Under the similar conditions, a racemic mixture of 1 also provided a gel/supernatant mixture, where the gel was enriched in either of L or D-form of 1 stochastically as the result of macroscopic chiral symmetry breaking in its gelation process.
Collapse
Affiliation(s)
- Kentaro Tashiro
- National Institute for Materials Science, International Center for Materials Nanoarchitectonics, 1-1 Namiki, 305-0044, Tsukuba, JAPAN
| | - Toshiaki Takei
- National Institute for Materials Science: Busshitsu Zairyo Kenkyu Kiko, Research Network and Facility Services Division, 1-2-1 Sengen, 305-0047, Tsukuba, JAPAN
| | - Alejandro M Fracaroli
- Universidad Nacional de Cordoba, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, X5000HUA, Cordoba, ARGENTINA
| | - Hiroyoshi Ohtsu
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Department of Chemistry, 2-12-1 Ookayama, Meguro-ku, 152-8550, Tokyo, JAPAN
| | - Masaki Kawano
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku, Department of Chemistry, 2-12-1 Ookayama, Meguro-ku, 152-8550, Tokyo, JAPAN
| | - Hiroyoshi Ohtsu
- RIKEN: Rikagaku Kenkyujo, Center for Emergent Matter Science, 2-1 Hirosawa, 351-0198, Wako, JAPAN
| | - Daisuke Hashizume
- RIKEN: Rikagaku Kenkyujo, Center for Emergent Matter Science, 2-1 Hirosawa, 351-0198, Wako, JAPAN
| |
Collapse
|
4
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
5
|
Naranjo C, Dorca Y, Ghosh G, Gómez R, Fernández G, Sánchez L. Chain-capper effect to bias the amplification of asymmetry in supramolecular polymers. Chem Commun (Camb) 2021; 57:4500-4503. [PMID: 33956018 DOI: 10.1039/d1cc00740h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kinetically controlled amplification of asymmetry experienced in the co-assembly of chiral tribiphenylaminetricarboxamides (S)-1 and (R)-1 is investigated. The formation of metastable monomeric species through intramolecular H-bonds retards the efficient amplification of asymmetry due to a chain-capper effect.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| | - Yeray Dorca
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| | - Goutam Ghosh
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Complutense de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Van Zee NJ, Mabesoone MFJ, Adelizzi B, Palmans ARA, Meijer EW. Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States. J Am Chem Soc 2020; 142:20191-20200. [PMID: 33169999 PMCID: PMC7705959 DOI: 10.1021/jacs.0c10456] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
By enchaining a small fraction of chiral monomer units, the helical sense of a dynamic polymer constructed from achiral monomer units can be disproportionately biased. This phenomenon, known as the sergeants-and-soldiers (S&S) effect, has been found to be widely applicable to dynamic covalent and supramolecular polymers. However, it has not been exemplified with a supramolecular polymer that features multiple helical states. Herein, we demonstrate the S&S effect in the context of the temperature-controlled supramolecular copolymerization of chiral and achiral biphenyl tetracarboxamides in alkanes. The one-dimensional helical structures presented in this study are unique because they exhibit three distinct helical states, two of which are triggered by coassembling with monomeric water that is codissolved in the solvent. The self-assembly pathways are rationalized using a combination of mathematical fitting and simulations with a thermodynamic mass-balance model. We observe an unprecedented case of an "abnormal" S&S effect by changing the side chains of the achiral soldier. Although the molecular structure of these aggregates remains elusive, the coassembly of water is found to have a profound impact on the helical excess.
Collapse
Affiliation(s)
- Nathan J. Van Zee
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Chimie
Moléculaire, Macromoléculaire, Matériaux, ESPCI
Paris, Université PSL, CNRS, 75005 Paris, France
| | - Mathijs F. J. Mabesoone
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Beatrice Adelizzi
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Dorca Y, Sánchez‐Naya R, Cerdá J, Calbo J, Aragó J, Gómez R, Ortí E, Sánchez L. Impact of Molecular Size and Shape on the Supramolecular Co‐Assembly of Chiral Tricarboxamides: A Comparative Study. Chemistry 2020; 26:14700-14707. [DOI: 10.1002/chem.202002879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yeray Dorca
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Roberto Sánchez‐Naya
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Rafael Gómez
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Luis Sánchez
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
8
|
Mukherjee A, Ghosh S. Circularly Polarized Luminescence from Chiral Supramolecular Polymer and Seeding Effect. Chemistry 2020; 26:12874-12881. [DOI: 10.1002/chem.202002056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
9
|
Militzer S, Nishimura N, Ávila‐Rovelo NR, Matsuda W, Schwaller D, Mésini PJ, Seki S, Ruiz‐Carretero A. Impact of Chirality on Hydrogen‐Bonded Supramolecular Assemblies and Photoconductivity of Diketopyrrolopyrrole Derivatives. Chemistry 2020; 26:9998-10004. [PMID: 32369228 DOI: 10.1002/chem.202001540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Swann Militzer
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Nozomi Nishimura
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Nelson Ricardo Ávila‐Rovelo
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Wakana Matsuda
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Duncan Schwaller
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Philippe J. Mésini
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Amparo Ruiz‐Carretero
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| |
Collapse
|
10
|
Nadimetla DN, Al Kobaisi M, Bugde ST, Bhosale SV. Tuning Achiral to Chiral Supramolecular Helical Superstructures. CHEM REC 2020; 20:793-819. [PMID: 32181970 DOI: 10.1002/tcr.202000004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self-assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.
Collapse
Affiliation(s)
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Sandesh T Bugde
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | | |
Collapse
|
11
|
Greciano EE, Calbo J, Buendía J, Cerdá J, Aragó J, Ortí E, Sánchez L. Decoding the Consequences of Increasing the Size of Self-Assembling Tricarboxamides on Chiral Amplification. J Am Chem Soc 2019; 141:7463-7472. [PMID: 30983341 DOI: 10.1021/jacs.9b02045] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A complete series of experimental and theoretical investigations on the supramolecular polymerization of chiral (1 and 2) and achiral (3) oligo(phenylene ethynylene) tricarboxamides (OPE-TAs) is reported. The performance of seargents-and-soldiers (SaS) and majority rules (MR) experiments has allowed deriving a full set of thermodynamic parameters, including the helix reversal penalty (HRP) and the mismatch penalty (MMP). The results described illustrate the influence exerted by the number of stereogenic centers per monomeric unit and the temperature on the chiral amplification phenomenon. While the HRP decreases upon decreasing the number of chiral side chains, the MMP follows an opposite trend. The experimental trend observed in MR experiments contrasts with that reported for benzenetricarboxamides (BTAs), for which the chiral amplification ability increases by lowering the number of stereogenic centers or increasing the temperature. Theoretical calculations predict that the rotational angle between adjacent monomeric units in the stack (ca. 18°) gradually decreases when decreasing the number of branched chiral side chains and leads to higher MMP values, in good accord with the experimental trend. The reduction of the rotational angle gives rise to less efficient H-bonding interactions between the peripheral amide functional groups and is suggested to provoke a decrease of the HRP as experimentally observed. In BTAs, increasing the number of stereogenic centers per monomeric unit results in a negligible change of the rotation angle between adjacent units (ca. 65°), and, consequently, the steric bulk increases with the number of chiral side chains, leading to higher MMP values. The data presented herein contribute to shed light on the parameters controlling the transfer and amplification of chirality processes in supramolecular polymers, highlighting the enormous influence exerted by the size of the self-assembling unit on the final helical outcome.
Collapse
Affiliation(s)
- Elisa E Greciano
- Departamento de Química Orgánica, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Julia Buendía
- Departamento de Química Orgánica, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| |
Collapse
|
12
|
Matsuda W, Sakurai T, Ghosh G, Ghosh S, Seki S. Transient Optical-Microwave Spectroscopy for Electron Mobility Assessment in Solids and Gels: A Comprehensive Approach. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Goutam Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| |
Collapse
|
13
|
Edwards W, Smith DK. Chiral Assembly Preferences and Directing Effects in Supramolecular Two-Component Organogels. Gels 2018; 4:gels4020031. [PMID: 30674807 PMCID: PMC6209267 DOI: 10.3390/gels4020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/31/2022] Open
Abstract
The impact of chirality on the self-assembly of supramolecular gels is of considerable importance, as molecular-scale programming can be translated into nanostructuring and ultimately affect macroscopic performance. This paper explores the effect of chirality on the assembly of two-component gels comprised of a second-generation dendritic lysine peptide acid, containing three chiral centres, and an amine. This combination forms an acid⁻amine complex that assembles into nanofibres through peptide-peptide hydrogen bonds, leading to organogels. With achiral amines, a racemic mixture of l,l,l and d,d,d dendritic peptide acids surprisingly forms the best gels-more commonly, mixing enantiomers suppresses gelation. Thermodynamic studies demonstrate that depending on the amine, the greater stability of heterochiral gels can either be entropically or enthalpically driven. With amines possessing "R" chirality, the l,l,l peptide acid consistently forms more effective gels than its d,d,d analogue. Furthermore, in mixed gels, l,l,l sometimes imposes its assembly preference onto d,d,d. In summary, this paper demonstrates a rare example in which heterochiral gels are preferred, and also explores directing effects when each component in a two-component gel is chiral.
Collapse
Affiliation(s)
- William Edwards
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|