1
|
Wang HN, Meng X, Cao Y, Li SL, Lan YQ. Atomically Precise Metal-Metal Oxide Interface in Polyoxometalate-Noble Metal Hybrid Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408884. [PMID: 39564752 DOI: 10.1002/smll.202408884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Metal-metal oxide hybrid materials, typically composed of metal nanoparticles anchored on metal oxides matrix, are devoted enormous attentions as famous heterogeneous catalysts. The interactions between noble metals and metal oxides as well as their interfaces have been proven to be the origin of their excellent catalytic performance. Deep understandings on the interactions between noble metals and metal oxides at atomic precision, thus to precisely assess their contributions to catalysis, can serve as basic principles for catalyst design. In recent years, polyoxometalates (POMs), which in principle can be regarded as atomically precise metal oxide clusters, have been shown to have strong affinity to noble metals, thus forming diverse kinds of POM-noble metal hybrid clusters. Their well-resolved atomically precise structures and hybrid nature promise them as ideal platforms to understand the interfaces and interactions between noble metals and metal oxides. In this review, metal-metal oxide interface is classified into different categories based on the different configurations of hybrid clusters, and aims to understand the interface structures and electronic correlations between POMs and noble metals at the atomic precision. Based on these basic understandings, the study provides the perspectives on the challenges and research efforts to be paid in the future.
Collapse
Affiliation(s)
- Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yitao Cao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Zhao Z, Zhao M, Deng L, Li Q, Zhang J, Su H, Lv H, Yang GY. Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters. Chem Commun (Camb) 2024; 60:5415-5418. [PMID: 38683147 DOI: 10.1039/d4cc00681j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters, [Nb6O19@Ag45(iPrS)23(CH3COO)14] (Ag45) and (H3O)4[Nb6O19@Ag41KS2.5O2(H2O)7.5(iPrS)24(CH3COO)5] (Ag41), were synthesized using a facile one-pot solvothermal approach. Single crystal X-ray diffraction analyses revealed the presence of a classical Lindqvist-type [Nb6O19]8- anion template, with iPrS- and CH3COO- surface-protecting ligands in both silver clusters, which can further form two-dimensional Ag45 assembly and one-dimensional Ag41 chain packing structures. Both Ag45 and Ag41 clusters exhibited intriguing photothermal conversion properties and temperature-dependent emission behavior.
Collapse
Affiliation(s)
- Zichen Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Mengyun Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Lan Deng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Qing Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jing Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Haifeng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
3
|
Wang Z, Zhu YJ, Ahlstedt O, Konstantinou K, Akola J, Tung CH, Alkan F, Sun D. Three in One: Three Different Molybdates Trapped in a Thiacalix[4]arene Protected Ag 72 Nanocluster for Structural Transformation and Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202314515. [PMID: 38015420 DOI: 10.1002/anie.202314515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Polyoxometalates (POMs) represent crucial intermediates in the formation of insoluble metal oxides from soluble metal ions, however, the rapid hydrolysis-condensation kinetics of MoVI or WVI makes the direct characterization of coexisted molecular species in a given medium extremely difficult. Silver nanoclusters have shown versatile capacity to encapsulate diverse POMs, which provides an alternative scene to appreciate landscape of POMs in atomic precision. Here, we report a thiacalix[4]arene protected silver nanocluster (Ag72b) that simultaneously encapsulates three kinds of molybdates (MoO4 2- , Mo6 O22 8- and Mo7 O25 8- ) in situ transformed from classic Lindqvist Mo6 O19 2- , providing more deep understanding on the structural diversity and condensation growth route of POMs in solution. Ag72b is the first silver nanocluster trapping so many kinds of molybdates, which in turn exert collective template effect to aggregate silver atoms into a nanocluster. The post-reaction of Ag72b with AgOAc or PhCOOAg produces a discrete Ag24 nanocluster (Ag24a) or an Ag28 nanocluster based 1D chain structure (Ag28a), respectively. Moreover, the post-synthesized Ag28a can be utilized as potential ignition material for further application. This work not only provides an important model for unlocking dynamic features of POMs at atom-precise level but also pioneers a promising approach to synthesize silver nanoclusters from known to unknown.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
| | | | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, 33014, Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Fahri Alkan
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
4
|
Ma C, Gui K, Xu J, Lin K, Ma P, Zhang C, Wang J, Niu J. Beyond Anion Template: Polyoxometalate as a Property Influencer in High-Nuclearity Silver Thiolate Cluster. Inorg Chem 2023; 62:20980-20986. [PMID: 38085912 DOI: 10.1021/acs.inorgchem.3c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Two 48-nuclei silver nanocages with similar structures and compositions were synthesized by using Keggin-type polyoxometalates (POMs) BW12 and SiW11Ni as anionic templates. However, their photoluminescence and photocurrent properties showed obvious differences. These results suggest that POMs not only serve as anion templates in constructing silver clusters but also influence their properties.
Collapse
Affiliation(s)
- Chunyun Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Kaige Gui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiaxian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Kuishuo Lin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
5
|
Horita Y, Hossain S, Ishimi M, Zhao P, Sera M, Kawawaki T, Takano S, Niihori Y, Nakamura T, Tsukuda T, Ehara M, Negishi Y. Clarifying the Electronic Structure of Anion-Templated Silver Nanoclusters by Optical Absorption Spectroscopy and Theoretical Calculation. J Am Chem Soc 2023; 145:23533-23540. [PMID: 37862604 PMCID: PMC10623570 DOI: 10.1021/jacs.3c07194] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
Electronic structures of anion-templated silver nanoclusters (Ag NCs) are not well understood compared to conventional, template-free Ag NCs. In this study, we synthesized three new anion-templated Ag NCs, namely [S@Ag17(S-4CBM)15(PPh3)5]0, [S@Ag18(S-4CBM)16(PPh3)8]0, and [Cl@Ag18(S-4CBM)16(PPh3)8][PPh4], where S-4CBM = 4-chlorobenzene methanethiolate, and single-crystal X-ray crystallography revealed that they have S@Ag6, S@Ag10, and Cl@Ag10 cores, respectively. Investigation of their electronic structures by optical spectroscopy and theoretical calculations elucidated the following unique features: (1) their electronic structures are different from those of template-free Ag NCs described by the superatomic concept; (2) optical absorption in the range of 550-400 nm for S2--templated Ag NCs is attributed to the charge transitions from S2--templated Ag-cage orbitals to the s-shaped orbital in the S2- moiety; (3) the Cl--templated Ag NCs can be viewed as [Cl@Ag18(S-4CBM)16(PPh3)8]0[PPh4]0 rather than the ion pair [Cl@Ag18(S-4CBM)16(PPh3)8]-[PPh4]+; and (4) singlet-coupled singly occupied orbitals are involved in the optical absorption of the Cl--templated Ag NC.
Collapse
Affiliation(s)
- Yusuke Horita
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Ishimi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Pei Zhao
- Institute
for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Miyu Sera
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshiki Niihori
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Ehara
- Institute
for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
6
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
7
|
Chen Y, Chang Z, Zhang Y, Chen K, Wang X. "Tree"-like Multidentate Ligand-Assisted Synthesis of Polymolybdate-Based Architectures with Multinuclear Metal Clusters: Supercapacitor and Electrochemical Sensing Performances. Inorg Chem 2022; 61:16020-16027. [PMID: 36177812 DOI: 10.1021/acs.inorgchem.2c02424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, aiming for constructing multinuclear metal cluster-modified polymolybdate-based architectures with novel conformation, the "tree"-like multidentate ligand 5-(3-pyridyl)-1H-tetrazole) (3-ptzH) is introduced into the polymolybdate reaction system. Three new polymolybdate-based architectures with various multinuclear metal clusters, H4[Cu6(μ3-OH)2(3-ptz)6(γ-Mo8O28) (H2O)2]·2H2O (BOHU-1), H2[Ag4(3-ptz)2(Mo8O26)] (BOHU-2), and H4[Cu5(3-ptzH)2(3-ptz)2(MnMo9O32)2(H2O)4] (BOHU-3) (BOHU = Bohai University), have been prepared via the hydrothermal method and structurally characterized. In BOHU-1, a kind of pentanuclear copper cluster unit: [Cu5(μ3-OH)2(3-ptz)6]2+ is formed, which connects to construct a one-dimensional (1D) cluster-based chain. The 1D chains are extended to a two-dimensional (2D) layer via the Cu ions, which are further linked by the 4-connected [γ-Mo8O28]8- anions to build a three-dimensional (3D) framework. In BOHU-2, when a AgI ion was used as the central metal, the 3-ptz adopts different coordination modes to link the Ag ions, forming hexanuclear [Ag6(3-ptz)4]2+ cluster and finally 1D chains. These 1D cluster-based chains are connected by the 6-connected [γ-Mo8O26]4- anions to establish a 2D layer, which is further extended by [Mo8O26]n4n- 1D chains to a 3D framework. For BOHU-3, the chiral [MnMo9O32]6- anions are introduced and coordinated with the Cu ions to build left- and right-handed 1D chains, which are connected via the [Cu3(3-ptz)4]2+ cluster to form a 1D ladder-like chain. The effects of 3-ptz on the formation of multinuclear clusters, as well as the metals and polymolybdates on the multinuclear clusters and final structures of BOHU-1∼3, are discussed. The electrochemical performances of BOHU-1∼3 as electrode materials for supercapacitors and electrochemical sensors are investigated.
Collapse
Affiliation(s)
- Yongzhen Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yuchen Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Keke Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
8
|
Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1216-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yu S, Hu H, Zou HH, Liu D, Liang Y, Liang FP, Chen Z. Two Heterometallic Nanoclusters [Dy III4Ni II8] and [Dy III10Mn III4Mn II2]: Structure, Assembly Mechanism, and Magnetic Properties. Inorg Chem 2022; 61:3655-3663. [PMID: 35167747 DOI: 10.1021/acs.inorgchem.1c03768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A full understanding of the assembly mechanisms of coordination complexes is of great importance for a directional synthesis under control. We thus explored here the formation mechanisms of the two new heterometallic nanoclusters [DyIII4NiII8(μ3-OH)8(L)8(OAc)4(H2O)4]·3.25EtOH·4CH3CN (1) and [DyIII10MnIII4MnII2O4(OH)12(OAc)16(L)4(HL)2(EtOH)2]·2EtOH·2CH3CN·2H2O (2) with different cubane-based squarelike ring structures, which were obtained from the reactions of 4-bromo-2-[(2-hydroxypropylimino)methyl]phenol (H2L) with Dy(NO)3·6H2O and the transition metal salt Ni(OAc)2·4H2O or Mn(OAc)2·4H2O. The high-resolution electrospray ionization mass spectrometry (HRESI-MS) tests showed that the skeletons of clusters 1 and 2 have a high stability under the measurement conditions for HRESI-MS. The intermediates formed in the reaction courses of clusters 1 and 2 were tracked using time-dependent HRESI-MS, which helped to determine the proposed hierarchical assembly mechanisms for 1 (H2L → NiL → Ni2L2 → Ni3L4 → Ni4L4 → DyNi4L5 → Dy2Ni6L6 → Dy3Ni6L6 → Dy3Ni7L7 → Dy4Ni8L8) and 2 (H2L → MnL → DyMnL → DyMn2L → Dy2Mn2Lx → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx and H2L → DyL → Dy4L2 → Dy6L2 → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx). This is one of the rare examples of investigating the assembly mechanisms of 3d-4f heterometallic clusters. Magnetic studies indicated that the title complexes both show slow magnetic relaxation behaviors and cluster 1 is a field-induced single-molecule magnet.
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
10
|
Yu JQ, Xue CH, Zhou K, Fang Y, Ji JY, Chen BK, Bi YF. Trapping a [W10O32]6- decatungstate anion in an Ag44 nanowheel. Chem Asian J 2022; 17:e202200072. [PMID: 35191620 DOI: 10.1002/asia.202200072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 11/08/2022]
Abstract
Compound [Ag 44 (W 10 O 32 )(S t Bu) 24 (CF 3 COO) 8 ](CF 3 COO) 6 ·6H 2 O ( 1 ) was synthesized through the one-pot method, which is the first case of isolating a new silver thiolate cluster containing a [W 10 O 32 ] 6- template which transforms from WO 4 2- polyoxoanion through a self-assembly process. The anionic nature of the reduced [W 10 O 32 ] 6- template and the effective silver-oxygen interaction contribute to the formation of the Ag 44 nanowheel in 1 . The luminescence, photocatalytic activity and electrochemistry properties of 1 were studied.
Collapse
Affiliation(s)
- Jia-Qun Yu
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, CHINA
| | - Chun-Hui Xue
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, CHINA
| | - Kun Zhou
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, No. 1 Dandong Road West, 113001, Fushun, CHINA
| | - Yuan Fang
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, CHINA
| | - Jiu-Yu Ji
- Liaoning Shihua University College of Chemistry and Materials Science, School of Information and Control Engineering, CHINA
| | - Bao-Kuan Chen
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, CHINA
| | - Yan-Feng Bi
- Liaoning Shihua University College of Chemistry and Materials Science, Department of Chemistry, CHINA
| |
Collapse
|
11
|
Zhang MM, Dong XY, Wang YJ, Zang SQ, Mak TC. Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Hu H, Lan L, Zhang T, Yang X, Yang H, Xie Y, Cui C, Shi Z, Ji N. Recent advances in polyoxometalate-based metal-alkynyl clusters. CrystEngComm 2022. [DOI: 10.1039/d2ce00190j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper focuses on the recent advances in polyoxometalate-based metal-alkynyl clusters.
Collapse
Affiliation(s)
- Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Lili Lan
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Xiuyan Yang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Huan Yang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Yadian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Can Cui
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Ningning Ji
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P. R. China
| |
Collapse
|
13
|
|
14
|
Ge R, Li XX, Zheng ST. Recent advances in polyoxometalate-templated high-nuclear silver clusters. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Cheng X, Sun P, Zhang N, Zhou S, Xin X. Self-assembly of silver nanoclusters and phthalic acid into hollow tubes as a superior sensor for Fe3+. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
He L, Dong T. Progress in controlling the synthesis of atomically precise silver nanoclusters. CrystEngComm 2021. [DOI: 10.1039/d1ce01217g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This short review was designed to summarize the advances in synthesis methods of silver nanoclusters.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Tingting Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, PR China
| |
Collapse
|
17
|
Shen YL, Zhao P, Jin JL, Han J, Liu C, Liu Z, Ehara M, Xie YP, Lu X. A comparative study of [Ag 11( iPrS) 9(dppb) 3] 2+ and [Ag 15S( sBuS) 12(dppb) 3] +: templating effect on structure and photoluminescence. Dalton Trans 2021; 50:10561-10566. [PMID: 34263892 DOI: 10.1039/d1dt01111a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atomically precise silver clusters with tunable photoluminescence (PL) properties have attracted extensive attention due to their great value for basic science and future applications. Here, we report that the addition of a sulfido template into a triangular thiolated silver cluster [Ag11(iPrS)9(dppb)3]·2CF3SO3·CH3OH (Ag11, dppb = 1,4-bis(diphenylphosphino)butane), which is emissive at 660 nm under ambient conditions, produced another silver cluster [S@Ag15(sBuS)12(dppb)3]·CF3SO3·H2O (Ag15) that displays 716 nm emission with a 56 nm redshift aided by the ligand sec-butyl mercaptan. The sulfido template, which affects the geometrical and electronic structures, results in a redshift of Ag11 room-temperature PL as a result of opening up the template-to-metal charge transfer (TMCT) and disturbing the electronic transition between the metal core and ligands at the periphery.
Collapse
Affiliation(s)
- Yang-Lin Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jun Han
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Chen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
18
|
Yu S, Zhang QH, Chen Z, Zou HH, Hu H, Liu D, Liang FP. Structure, assembly mechanism and magnetic properties of heterometallic dodecanuclear nanoclusters DyIII4MII8 (M = Ni, Co). Inorg Chem Front 2021. [DOI: 10.1039/d1qi01051d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two isostructural heterometallic dodecanuclear nanoclusters [Dy4Co8(μ3-OH)8(L)8(OAc)4(H2O)4]·3EtOH·3CH3CN·H2O (1) and [Dy4Ni8(μ3-OH)8(L)8(OAc)4(H2O)4]·3.5EtOH·0.5CH3CN·5H2O (2) with different assembly mechanisms are presented here.
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qin-Hua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
19
|
Pillay MN, van Zyl WE, Liu CW. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. NANOSCALE 2020; 12:24331-24348. [PMID: 33300525 DOI: 10.1039/d0nr05632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis remains a major strength in chemistry and materials science and relies on the formation of new molecules and diverse forms of matter. The construction and identification of large molecules poses specific challenges and has historically lain in the realm of biological (organic)-type molecules with evolved synthesis methods to support such endeavours. But with the development of analytical tools such as X-ray crystallography, new synthesis methods toward large metal-based (inorganic) molecules and clusters have come to the fore, making it possible to accurately determine the precise distribution of hundreds of atoms in large clusters. In this review, we focus on different synthesis protocols used to form new metal clusters such as templating, alloying and size-focusing strategies. A specific focus is on group 11 metals (Cu, Ag, Au) as they currently predominate large metal cluster investigations and related Au and Ag bulk surface phenomena. This review focuses on metal clusters that have very high-nuclearity, i.e. with 50 or more metal centers within the isolated cluster. This size domain, it is believed, will become increasingly important for a variety of applications as these metal clusters are positioned at the interface between the molecular and bulk phases, whilst remaining a classic nanomaterial and retaining unique nano-sized properties.
Collapse
Affiliation(s)
- Michael N Pillay
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa.
| | | | | |
Collapse
|
20
|
Hu T, Hu C, Li Y, Meng L, Xie Y, Liao M, Zhong G, Lu CZ. Synthesis and characterization of a nanocluster-based silver(i) tert-butylethynide compound with a large second-harmonic generation response. NANOSCALE 2020; 12:11847-11857. [PMID: 32469355 DOI: 10.1039/d0nr03364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new nanocluster-based silver(i) tert-butylethynide compound, namely, (tBuC[triple bond, length as m-dash]CAg)2(Ag4SiW12O40)(DMSO)6 (HT-1), has been synthesized and structurally characterized by X-ray crystallography. The two kinds of nanocluster synthons (a silver aggregate named [(tBuC[triple bond, length as m-dash]C)2Ag6(DMSO)6] and a SiW12 polyoxoanion) are assembled into a three-dimensional coordination network, which has a non-centrosymmetric crystal lattice. Powder second-harmonic generation (SHG) measurements reveal that HT-1 belongs to the phase-matchable class with a moderately strong SHG response of about 3 times that of the KH2PO4 (KDP) sample. HT-1 represents the first example of a Ag(i) alkynyl cluster compound with a SHG response. The present study not only extends the application fields of Ag(i) alkynyl clusters but also demonstrates a new paradigm for understanding the Ag(i) alkynyl structural chemistry.
Collapse
Affiliation(s)
- Ting Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China. and Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chunli Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China.
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China. and Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China. and Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Yiming Xie
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Mingyue Liao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Guiming Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China. and Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian Province, P. R. China. and Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
21
|
Liao J, Chang H, Fang C, Liu CW. T‐symmetric 40‐nucleus silver clusters assembled by hetero‐anions. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian‐Hong Liao
- Department of Chemistry National Dong Hwa University Hualien Taiwan R.O.C
| | - Hao‐Wei Chang
- Department of Chemistry National Dong Hwa University Hualien Taiwan R.O.C
| | - Ching‐Shiang Fang
- Department of Chemistry National Dong Hwa University Hualien Taiwan R.O.C
| | - C. W. Liu
- Department of Chemistry National Dong Hwa University Hualien Taiwan R.O.C
| |
Collapse
|
22
|
Liu KG, Bigdeli F, Li HJ, Li JZ, Yan XW, Hu ML, Morsali A. Hexavalent Octahedral Template: A Neutral High-Nucleus Silver Alkynyl Nanocluster Emitting Infrared Light. Inorg Chem 2020; 59:6684-6688. [DOI: 10.1021/acs.inorgchem.0c00665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan, Ningxia 750021, P. R. China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Hong-Jing Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan, Ningxia 750021, P. R. China
| | - Jing-Zhe Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin-Chuan, Ningxia 750021, P. R. China
| | - Xiao-Wei Yan
- College of Materials and Environmental Engineering and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, Guangxi 542800, P. R. China
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| |
Collapse
|
23
|
Liu KG, Wei XW, Bigdeli F, Gao XM, Li JZ, Yan XW, Hu ML, Morsali A. Investigation of the Effect of a Mixed-Ligand on the Accommodation of a Templating Molecule into the Structure of High-Nucleus Silver Clusters. Inorg Chem 2020; 59:2248-2254. [PMID: 31999438 DOI: 10.1021/acs.inorgchem.9b02956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advancement of the synthesis and control of the self-assembly process of new high-nucleus silver clusters with desired structures is important for both the material sciences and the many applications. Herein, three new silver clusters, 20-, 22-, and 8-nucleus, based on alkynyl ligands were constructed and their structures were confirmed by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, and Fourier-transform infrared spectroscopy (FT-IR). For the first time, the trivalent tetrahedron anion of AsO43-, as a template, and the surface ligand of Ph2PO2H, with new coordination modes, were employed in preparation of the silver clusters. The role of surface ligands and template anions in the size and structure of the clusters was investigated. The presence of the template in the structure of the clusters led to the formation of the high-nucleus clusters. Also, in this report, it was shown that the participation of the template in the assembly of a cluster can be controlled by the surface ligands. UV-vis absorption and luminescent properties of the clusters and the thermal stability of the 8-nucleus cluster were also studied.
Collapse
Affiliation(s)
- Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Xue-Wen Wei
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| | - Xue-Mei Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Jing-Zhe Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials , Ningxia University , Yin-Chuan , Ningxia 750021 , P. R. China
| | - Xiao-Wei Yan
- College of Materials and Environmental Engineering, and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization , Hezhou University , Hezhou , Guangxi 542800 , P. R. China
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| |
Collapse
|
24
|
Pan ZH, Deng CL, Wang Z, Lin JQ, Luo GG, Sun D. Silver clusters templated by homo- and hetero-anions. CrystEngComm 2020. [DOI: 10.1039/d0ce00489h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the use of homo- and hetero-anion templates for the ordered assembly of high-nuclearity silver clusters.
Collapse
Affiliation(s)
- Zhong-Hua Pan
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P.R. China
| | - Cheng-Long Deng
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P.R. China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Crystal Materials
- Shandong University
| | - Jin-Qing Lin
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P.R. China
| | - Geng-Geng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P.R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Crystal Materials
- Shandong University
| |
Collapse
|
25
|
Wang Z, Qu QP, Su HF, Huang P, Gupta RK, Liu QY, Tung CH, Sun D, Zheng LS. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9638-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wang Z, Liu JW, Su HF, Zhao QQ, Kurmoo M, Wang XP, Tung CH, Sun D, Zheng LS. Chalcogens-Induced Ag6Z4@Ag36 (Z = S or Se) Core–Shell Nanoclusters: Enlarged Tetrahedral Core and Homochiral Crystallization. J Am Chem Soc 2019; 141:17884-17890. [DOI: 10.1021/jacs.9b09460] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Jia-Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Quan-Qin Zhao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR 7177, 4 rue Blaise Pascal, Strasbourg 67008 Cedex, France
| | - Xing-Po Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
27
|
Wu T, Yin D, Hu X, Yang B, Liu H, Xie YP, Liu SX, Ma L, Gao GG. A disulfur ligand stabilization approach to construct a silver(i)-cluster-based porous framework as a sensitive SERS substrate. NANOSCALE 2019; 11:16293-16298. [PMID: 31465063 DOI: 10.1039/c9nr05301h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An atomically-precise silver(i)-cluster-based three-dimensional (3D) framework (UJN-1) stabilized by a ditiocarb (diethyldithiocarbamate) ligand has been unveiled for the first time by self-assembly. UJN-1 is composed of both Ag9 clusters and Ag5 subunits, of which the Ag9 clusters are bonded with Ag5 subunits by sharing the ditiocarb ligand to form a microporous 3,4-connected topological framework. The chemically reduced nano-sized derivative of UJN-1 exhibits highly sensitive surface enhanced Raman scattering (SERS) towards 4-mercaptobenzoic acid (4-MBA) signal molecules, which is ascribed to the porosity as well as the distribution of abundant crystalline Ag0 active sites. This work sheds light on a new bottom-up approach to construct SERS-active silver(i)-cluster-based 3D materials by disulfur ligand stabilization.
Collapse
Affiliation(s)
- Tong Wu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. and College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Di Yin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Bo Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. and College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yun-Peng Xie
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shi-Xi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Lulu Ma
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. and College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
28
|
Feng Y, Gao X, Shi J, Zhou K, Ji J, Bi Y. A Temperature‐Sensitive Luminescent Ag
42
Nanocluster Supported by
Tert
Butyl Thiol Ligands. Chem Asian J 2019; 14:3279-3282. [PMID: 31486264 DOI: 10.1002/asia.201901146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Hui Feng
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| | - Xiang‐Ling Gao
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| | - Ju‐Feng Shi
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| | - Kun Zhou
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| | - Jiu‐Yu Ji
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| | - Yan‐Feng Bi
- School of Chemistry and Materials ScienceLiaoning Shihua University No. 1 Dandong Road West Fushun Liaoning 113001 P. R. China
| |
Collapse
|
29
|
Wang Z, Gupta RK, Luo G, Sun D. Recent Progress in Inorganic Anions Templated Silver Nanoclusters: Synthesis, Structures and Properties. CHEM REC 2019; 20:389-402. [DOI: 10.1002/tcr.201900049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 People's Republic of China
| | - Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 People's Republic of China
| | - Geng‐Geng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education, College of Materials Science and EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 People's Republic of China
| |
Collapse
|
30
|
Wang Z, Sun YM, Qu QP, Liang YX, Wang XP, Liu QY, Kurmoo M, Su HF, Tung CH, Sun D. Enclosing classical polyoxometallates in silver nanoclusters. NANOSCALE 2019; 11:10927-10931. [PMID: 31139811 DOI: 10.1039/c9nr04045e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to the elusive nature of polyoxometallates (POMs) in the assembly of silver clusters, POMs trapped by silver clusters are usually different from the pristine form, which surely increases the novelty of the assembly results but makes the final structure predictability challenging. Herein, three novel high-nuclearity silver-thiolate clusters trapping two kinds of classical POMs, Lindqvist-Mo6O192- and V10O286-, are reported. They are identified to be [(V10O28)@Ag44] (SD/Ag44a), [(V10O28)@Ag46] (SD/Ag46), and [(Mo6O19)@Ag44] (SD/Ag44b) clusters, which are further extended to 1D chain, 2D sql layer, and 3D pcu framework, respectively. Of note, SD/Ag44b contains a regular cubic Mo6O19 core sealed by an Ag44(EtS)24 shell in a pseudo-sodalite unit and six SCl4 planar squares connecting the respective adjacent silver tetragonal faces. This structure is a novel zeolite closely related to the natural alumino-silicate 'sodalite' but exceptionally made of core-shell silver clusters. Moreover, the Oh symmetric Mo6O192- templates an Oh symmetric Ag44 cluster in SD/Ag44b, realizing authentic symmetry delivery from guest to host in this system. This is a rare silver cluster family with classical POMs encapsulated.
Collapse
Affiliation(s)
- Zhi Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang JY, Huang RW, Wei Z, Xi XJ, Dong XY, Zang SQ. Linker Flexibility-Dependent Cluster Transformations and Cluster-Controlled Luminescence in Isostructural Silver Cluster-Assembled Materials (SCAMs). Chemistry 2019; 25:3376-3381. [DOI: 10.1002/chem.201805808] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jia-Yin Wang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Ren-Wu Huang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Zhong Wei
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Xiao-Juan Xi
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Xi-Yan Dong
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
- College of Chemistry and Chemical Engineering; Henan Polytechnic University Henan Key Laboratory of, Coal Green Conversion; Henan Polytechnic University; Jiaozuo 454000 P.R. China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| |
Collapse
|
32
|
Jiang W, Liu XM, Liu J, Shi J, Cao JP, Luo XM, You WS, Xu Y. A huge novel polyoxometalate-based cluster Fe10P4W32 exhibiting prominent electrocatalytic activity for the oxygen evolution reaction and third-order NLO properties. Chem Commun (Camb) 2019; 55:9299-9302. [DOI: 10.1039/c9cc03937f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel high-nuclear POM-based cluster {Fe10P4W32} consists of two inorganic blocks {P2W14} and four organic groups linked by ten iron ions.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Xiao-Mei Liu
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jian Liu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- P. R. China
| | - Jie Shi
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Xi-Ming Luo
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Wan-Sheng You
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- P. R. China
| | - Yan Xu
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|
33
|
Yang J, Zhang Y, Yang C, Zeng M. Tracking the Transformation Process of a Pair of Zn(II) Coordination Clusters: Crystallography and Mass Spectrometry. Isr J Chem 2018. [DOI: 10.1002/ijch.201800156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan 430062 P. R. China
| | - Yu‐Yi Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan 430062 P. R. China
| | - Chuang Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan 430062 P. R. China
| | - Ming‐Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical EngineeringHubei University Wuhan 430062 P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
34
|
Value-added anticancer reactivity of sub-5 nm Ag-drug nanoparticles derived from organosilver(I) MOF. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9376-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Lin LZ, Zhong QX, Hong JT, Chen HL, Chen WT. Syntheses, structures, photoluminescence and semiconductor properties of two novel mercury-lanthanide complexes with a three-dimensional open framework. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Wang Z, Su HF, Kurmoo M, Tung CH, Sun D, Zheng LS. Trapping an octahedral Ag 6 kernel in a seven-fold symmetric Ag 56 nanowheel. Nat Commun 2018; 9:2094. [PMID: 29844401 PMCID: PMC5974400 DOI: 10.1038/s41467-018-04499-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023] Open
Abstract
High-nuclearity silver clusters are appealing synthetic targets for their remarkable structures, but most are isolated serendipitously. We report here six giant silver-thiolate clusters mediated by solvents, which not only dictate the formation of an octahedral Ag64+ kernel, but also influence the in situ-generated Mo-based anion templates. The typical sevenfold symmetric silver nanowheels show a hierarchical cluster-in-cluster structure that comprises an outermost Ag56 shell and an inner Ag64+ kernel in the centre with seven MoO42- anion templates around it. Electrospray ionization mass spectrometry analyses reveal the underlying rule for the formation of such unique silver nanowheels. This work establishes a solvent-intervention approach to construct high-nuclearity silver clusters in which both the formation of octahedral Ag64+ kernel and in situ generation of various Mo-based anion templates can be simultaneously controlled.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR 7177, 4 Rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Chen-Ho Tung
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Di Sun
- Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China.
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
37
|
Yan BJ, Du XS, Huang RW, Yang JS, Wang ZY, Zang SQ, Mak TCW. Self-Assembly of a Stable Silver Thiolate Nanocluster Encapsulating a Lacunary Keggin Phosphotungstate Anion. Inorg Chem 2018; 57:4828-4832. [DOI: 10.1021/acs.inorgchem.8b00702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bing-Jie Yan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang-Sha Du
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Sen Yang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C. W. Mak
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
38
|
Duan GX, Xie YP, Jin JL, Bao LP, Lu X, Mak TCW. High-Nuclearity Heterometallic tert
-Butylethynide Clusters Assembled with tert
-Butylphosphonate. Chemistry 2018; 24:6762-6768. [DOI: 10.1002/chem.201705906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Guang-Xiong Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 P.R. China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 P.R. China
| | - Jun-Ling Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 P.R. China
| | - Li-Piao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 P.R. China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology; School of Materials Science and Engineering; Huazhong University of Science and Technology (HUST); Wuhan 430074 P.R. China
| | - Thomas C. W. Mak
- Department of Chemistry and Center of Novel Functional Molecules; The Chinese University of Hong Kong, Shatin, New Territories; Hong Kong SAR P.R. China
| |
Collapse
|
39
|
Li X, Hao P, Shen J, Fu Y. Two photochromic iodoargentate hybrids with adjustable photoresponsive mechanism. Dalton Trans 2018; 47:6031-6035. [DOI: 10.1039/c8dt00829a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two photochromic hybrid iodoargentates with adjustable photoresponsive mechanism have been synthesized and exhibit fast response and wide color range.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Pengfei Hao
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Junju Shen
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Yunlong Fu
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| |
Collapse
|
40
|
Liu JW, Su HF, Wang Z, Li YA, Zhao QQ, Wang XP, Tung CH, Sun D, Zheng LS. A giant 90-nucleus silver cluster templated by hetero-anions. Chem Commun (Camb) 2018; 54:4461-4464. [DOI: 10.1039/c8cc01767k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A giant 90-nucleus silver cluster templated by hetero-anions was isolated and characterized.
Collapse
Affiliation(s)
- Jia-Wei Liu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Hai-Feng Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Zhi Wang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Yan-An Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Quan-Qin Zhao
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Xing-Po Wang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| |
Collapse
|
41
|
Jin JL, Xie YP, Lu X. High-nuclearity silver ethynide clusters containing polynucleating oxygen donor ligands. Dalton Trans 2018; 47:12972-12978. [DOI: 10.1039/c8dt02700e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three high-nuclearity heterometallic ethynide clusters were constructed with various polynucleating oxygen donor ligands.
Collapse
Affiliation(s)
- Jun-Ling Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| |
Collapse
|