1
|
Xi X, Lv L, Gong X, Zhang Z, Gao Y, Xia Y, Wan S, Wu X, Chen H, Yang D, Zeng Y, Sheng H, Li T, Dong A. Emergence of Voronoi-Patterned Cellular Membranes via Confinement Transformation of Self-Assembled Metal-Organic Frameworks. J Am Chem Soc 2025; 147:6983-6994. [PMID: 39937632 DOI: 10.1021/jacs.4c17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The self-assembly of nanoparticles allows the fabrication of complex, nature-inspired architectures. Among these, Voronoi tessellations─intricate patterns found in many natural systems such as insect wings and plant tissues─have broad implications across materials science, biology, and geography. However, replicating these irregular yet organized features at the nanoscale through nanoparticle self-assembly remains challenging. Here, we introduce a confinement transformation method to generate two-dimensional (2D) Voronoi patterns by converting metal-organic frameworks, specifically zeolitic imidazolate framework-8 (ZIF-8), into layered hydroxides. The process begins with the self-assembly of ZIF-8 particles into densely packed monolayers at the liquid-air interface, driven by the Marangoni effect. Subsequent Ni2+-induced etching converts the floating ZIF-8 monolayer into a freestanding membrane composed of interconnected polygonal cells, closely resembling the geometric characteristics of Voronoi tessellations. We systematically investigate the parameters affecting the transformation of ZIF-8 particles, shedding light on the mechanism governing Voronoi pattern formation. Mechanical testing and simulations demonstrate that the resulting cellular membranes exhibit enhanced stress distribution and crack resistance, attributed to their Voronoi-patterned architecture. These robust, monolithic membranes composed of Ni-based hydroxides, when serving as catalyst support materials, can synergistically enhance the intrinsic activity of Pt catalysts for alkaline hydrogen evolution reaction by facilitating water dissociation. This work presents a promising approach for creating nature-inspired materials with optimal stress management, superior mechanical properties, and potential catalytic applications.
Collapse
Affiliation(s)
- Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Longfei Lv
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xiaoli Gong
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yifan Gao
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Xuesong Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuwen Zeng
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongyuan Sheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Vo KQ, Huynh TTT, Nguyen TA, Truong TT. Rational side-by-side self-assembly of gold nanorods with short and medium aspect ratios via the self-evaporation method to boost their potential as a surface-enhanced Raman scattering (SERS) substrate. Dalton Trans 2025; 54:2540-2560. [PMID: 39758015 DOI: 10.1039/d4dt03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates. This research presents a novel and facile methodology for fabricating SERS nanosubstrates. This method entails self-assembling gold nanorods (AuNRs) with short and medium aspect ratios (ARs) through natural evaporation. By manipulating the water-to-ethanol ratios, we ascertain the appropriate conditions for the rational alignment of the nanorods in both perpendicular and parallel orientations relative to the silicon substrate. These nanosubstrates have been experimentally evaluated for their ability to improve the Surface-Enhanced Raman Scattering (SERS) performance, presenting a novel perspective in this field. In addition, a computational analysis employing the finite-difference time-domain (FDTD) method was conducted to elucidate the electromagnetic field generated by nanoarrays when subjected to incident light of varying wavelengths, including 532 nm, 638 nm, and 785 nm. Notably, the FDTD simulation outcomes indicated that gold nanorods (AuNRs) possessing an aspect ratio of 3.0 and nanogaps of 2.0 nm exhibited exceptional electromagnetic field characteristics when aligned parallel to the substrate under 532 nm laser illumination. Conversely, when the AuNRs were oriented perpendicular to the substrates, they produced lower EMFs upon interaction with excitation laser light. These findings can potentially contribute to the advancement of SERS nanosubstrate design.
Collapse
Affiliation(s)
- Khuong Quoc Vo
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Tuyen Thi Huynh
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thu Anh Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tan-Trung Truong
- Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam
| |
Collapse
|
3
|
Teng Y, Li X, Chen Y, Zhong Y, Xu P, Shan S, Gunasekaran S. Exploration of cucurbituril-mediated SERS plasmonic nanoarrays with sub-nanometer gaps. Mikrochim Acta 2024; 191:719. [PMID: 39477827 DOI: 10.1007/s00604-024-06800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
The uneven distribution of hotspots and the challenges associated with precise analyte localization within these hotspots present significant hurdles in the field of surface-enhanced Raman scattering (SERS). Here, at the water-oil interface, gold nanoparticles (AuNPs) interconnected by cucurbiturils[8] (CB[8]) with sub-nanometer gaps (AuNPs:CB[8]) were organized into plasmonic arrays. This arrangement was engineered to generate highly efficient hotspots. The CB[8] molecules, serving a dual role, not only facilitated the assembly of AuNPs with sub-nanometer (~ 1 nm) gaps to create intense plasmonic hotspots but also acted as molecular traps, enabling the precise localization of molecules within these hotspots. By comparing the enhancement effect of probe molecule on Au nanofilm, AuNPs:CB[8] colloids, and AuNPs:CB[8] nanofilm, it was found that the SERS intensity of the E1 characteristic peak in AuNPs:CB[8] nanofilm is five times higher than that on Au nanofilm, and more than 104 times higher than that of AuNPs:CB[8] colloids. The gaps are also accessible to different electronegativite molecules, such as estrone, p-aminoazobenzene, or methylene blue, which are captured at the plasmonic hotspots by the interaction of CB[8]. The method was employed for the practical detection of artificial antioxidant butylated hydroxyanisole (BHA), which has a weak Raman scattering cross-section, by coupling it with a reaction to enhance its SERS effect. The detection limit of BHA in soybean oil sample is 5.89 × 10-8 mol/L, with the recovery range 85.1-115%. In conclusion, this hot-spot design and molecular capture approach will offer a highly effective method for detecting weak Raman scattering cross-section molecules and holds great promise for practical applications in the future.
Collapse
Affiliation(s)
- Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Xin Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yingxin Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Zhong
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Pei Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shengyan Shan
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, 310009, China
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Shin H, Hong L, Park W, Shin J, Park JB. Frequency dependence of nanorod self-alignment using microfluidic methods. NANOTECHNOLOGY 2024; 35:305603. [PMID: 38636472 DOI: 10.1088/1361-6528/ad403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Dielectrophoresis is a potential candidate for aligning nanorods on electrodes, in which the interplay between electric fields and microfluidics is critically associated with its yield. Despite much of previous work on dielectrophoresis, the impact of frequency modulation on dielectrophoresis-driven nanorod self-assembly is insufficiently understood. In this work, we systematically explore the frequency dependence of the self-alignment of silicon nanorod using a microfluidic channel. We vary the frequency from 1kHz to 1000 kHz and analyze the resulting alignments in conjunction with numerical analysis. Our experiment reveals an optimal alignment yield at approximately 100 kHz, followed by a decrease in alignment efficiency. The nanorod self-alignments are influenced by multiple consequences, including the trapping effect, induced electrical double layer, electrohydrodynamic flow, and particle detachment. This study provides insights into the impact of frequency modulation of electric fields on the alignment of silicon nanorods using dielectrophoresis, broadening its use in various future nanotechnology applications.
Collapse
Affiliation(s)
- Hosan Shin
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| | - Lia Hong
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woosung Park
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jae Byung Park
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| |
Collapse
|
5
|
Tian Y, Zhao L, Shen X, Shang S, Pan Y, Dong G, Huo W, Zhu D, Tang X. Self-assembled core-shell nanoparticles with embedded internal standards for SERS quantitative detection and identification of nicotine released from snus products. Front Chem 2024; 12:1348423. [PMID: 38601887 PMCID: PMC11005032 DOI: 10.3389/fchem.2024.1348423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 04/12/2024] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a unique analytical technique with excellent performance in terms of sensitivity, non-destructive detection and resolution. However, due to the randomness and poor repeatability of hot spot distribution, SERS quantitative analysis is still challenging. Meanwhile, snus is a type of tobacco product that can release nicotine and other components in the mouth without burning, and the rapid detection technique based on SERS can reliably evaluate the amount of nicotine released from snus, which is of great significance for understanding its characteristics and regulating its components. Herein, the strategy was proposed to solve the feasibility of SERS quantitative detection based on self-assembled core-shell nanoparticles with embedded internal standards (EIS) due to EIS signal can effectively correct SERS signal fluctuations caused by different aggregation states and measurement conditions, thus allowing reliable quantitative SERS analysis of targets with different surface affinity. By means of process control, after the Au nanoparticles (Au NPs) were modified with 4-Mercaptobenzonitrile (4-MBN) as internal standard molecules, Ag shell with a certain thickness was grown on the surface of the AuNP@4-MBN, and then the Au@4-MBN@Ag NPs were used to regulate and control the assembly of liquid-liquid interface. The high-density nano-arrays assembled at the liquid-liquid interface ensure high reproducibility as SERS substrates, and which could be used for SERS detection of nicotine released from snus products. In addition, time-mapping research shows that this method can also be used to dynamically monitor the release of nicotine. Moreover, such destruction-free evaluation of the release of nicotine from snus products opens up new perspectives for further research about the impact of nicotinoids-related health programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
- Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xiaofeng Shen
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Shanzhai Shang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Yonghua Pan
- Hongta Tobacco (Group) Co., Ltd., Yuxi, China
| | - Gaofeng Dong
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Wang Huo
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Donglai Zhu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Xianghu Tang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
6
|
Xue X, Chen L, Zhao C, Lu M, Qiao Y, Wang J, Shi J, Chang L. Controllable preparation of Ti 3C 2T x/Ag composite as SERS substrate for ultrasensitive detection of 4-nitrobenzenethiol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123019. [PMID: 37385204 DOI: 10.1016/j.saa.2023.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Currently, metal carbonitride (MXene) has been identified as a hot research topic in the research area of surface-enhanced Raman scattering (SERS). In this study, Ti3C2Tx/Ag composite was fabricated as SERS substrate with different Ag contents. The fabricated Ti3C2Tx/Ag composites show good SERS behavior by detecting 4-Nitrobenzenethiol (4-NBT) probe molecules. Through calculation, the SERS enhancement factor (EF) of the Ti3C2Tx/Ag substrate was as high as 4.15 × 106. It is worth noting that the detection limit of 4-NBT probe molecules can be achieved ultralow concentration of 10-11 M. In this system, electromagnetic enhancement mechanism and chemical enhancement mechanism have synergistic effects on SERS phenomenon. Meanwhile, the Ti3C2Tx/Ag composite substrate exhibited good SERS reproducibility. In addition, the SERS detection signal hardly changed after 6 months of natural standing, and the substrate showed good stability. This work suggests that the Ti3C2Tx/Ag substrate could be used as a sensitivity SERS sensor for practical application, and could be applied in the field of environmental monitoring.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Ming Lu
- Key Laboratory of Functional Materials Physics and Chemistry (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jing Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| |
Collapse
|
7
|
Van Vu S, Nguyen AT, Cao Tran AT, Thi Le VH, Lo TNH, Ho TH, Pham NNT, Park I, Vo KQ. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. NANOSCALE ADVANCES 2023; 5:5543-5561. [PMID: 37822906 PMCID: PMC10563836 DOI: 10.1039/d3na00483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
In this study, we assessed the controlled synthesis and efficacy of surface-enhanced Raman scattering (SERS) on two distinct types of star-like Au@Ag core-shell nanoarrays. These nanoarrays were designed based on gold nanostars (AuNSs), which were synthesized with and without CTAB surfactant (AuNSs-CTAB and AuNSs-FS, respectively). The AuNS-FS nanoparticles were synthesized via a novel modification process, which helped overcome the previous limitations in the free-surfactant preparation of AuNSs by significantly increasing the number of branches, increasing the sharpness of the branches and minimizing the adsorption of the surfactant on the surface of AuNSs. Furthermore, the differences in the size and morphology of these AuNSs in the created nanoarrays were studied. To create the nanoarrays, a three-step method was employed, which involved the controlled synthesis of gold nanostars, covering them with a silver layer (AuNSs-FS@Ag and AuNSs-CTAB@Ag), and finally self-assembling the AuNS@Ag core-shelled nanoparticles via the liquid/liquid self-assembly method. AuNSs-FS@Ag showed higher ability in forming self-assembled nanoarrays than the nanoparticles prepared using CTAB, which can be attributed to the decrease in the repulsion between the nanoparticles at the interface. The nano-substrates developed with AuNSs-FS@Ag possessed numerous "hot spots" on their surface, resulting in a highly effective SERS performance. AuNSs-FS featured a significantly higher number of sharp branches than AuNSs-CTAB, making it the better choice for creating nanoarrays. It is worth mentioning that AuNSs-CTAB did not exhibit the same benefits as AuNSs-FS. The morphology of AuNSs with numerous branches was formed by controlling the seed boiling temperature and adding a specific amount of silver ions. To compare the SERS activity between the as-prepared nano-substrates, i.e., AuNS-CTAB@Ag and AuNS-FS@Ag self-assembled nanoarrays, low concentrations of crystal violet aqueous solution were characterized. The results showed that the developed AuNSs-FS@Ag could detect CV at trace concentrations ranging from 1.0 ng mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 0.45 ng mL-1 and limit of quantification (LOQ) of 1.38 ng mL-1. The nano-substrates remained stable for 42 days with a decrease in the intensity of the characteristic Raman peaks of CV by less than 7.0% after storage. Furthermore, the spiking method could detect trace amounts of CV in natural water from the Dong Nai River with concentrations as low as 1 to 100 ng mL-1, with an LOD of 6.07 ng mL-1 and LOQ of 18.4 ng mL-1. This method also displayed good reproducibility with an RSD value of 5.71%. To better understand the impact of CTAB stabilization of the Au@Ag star-like nanoparticles on their surface-enhanced Raman scattering (SERS) performance, we conducted density functional theory (DFT) calculations. Our research showed that the preparation of AuNSs-FS@Ag via self-assembly is an efficient, simple, and fast process, which can be easily performed in any laboratory. Furthermore, the research and development results presented herein on nanoarrays have potential application in analyzing and determining trace amounts of organic compounds in textile dyeing wastewater.
Collapse
Affiliation(s)
- Sy Van Vu
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh-Thu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh-Thi Cao Tran
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Viet-Ha Thi Le
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Tien Nu Hoang Lo
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH) 89 Yangdaegiro-gil, Ipjang-myeon Cheonan 31056 South Korea
- KITECH School, University of Science and Technology (UST) 176 Gajeong-dong, Yuseong-gu Daejeon 34113 South Korea
| | - Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyet N T Pham
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - In Park
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH) 89 Yangdaegiro-gil, Ipjang-myeon Cheonan 31056 South Korea
- KITECH School, University of Science and Technology (UST) 176 Gajeong-dong, Yuseong-gu Daejeon 34113 South Korea
| | - Khuong Quoc Vo
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Tian Y, Zhao L, Pan Y, Li Z, Shen X, Zhang X, Tang X, Feng X, Huang X. The volatile release evaluation of nicotine from snus products under different storage conditions based on surface-enhanced Raman spectroscopy technology. RSC Adv 2023; 13:23130-23137. [PMID: 37533785 PMCID: PMC10391323 DOI: 10.1039/d3ra03977c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection technique that provides unique chemical and structural information on target molecules. Snus is a type of tobacco product that can release nicotine and other components under certain humidity and temperature without burning, and the evaluation of its nicotine release under different storage conditions is very important for understanding its characteristics, regulating its components, and setting reasonable storage conditions. Herein, by means of an artificial climate box and suction extraction device, the volatile release evaluations of nicotine from snus products under different storage conditions were performed based on Fe3O4 microparticles coated with Au nanorods and Au nanoparticles (Fe3O4@AuNRsNPs) as SERS substrates combined with a capillary. The Fe3O4@AuNRsNPs assemblies can be fixed in the inner wall of the capillary with the aid of an external magnetic field, which improved the maneuverability of the SERS substrates. By comparing the intensities of the spectral peaks of the symmetrical breathing of the pyridine moiety of nicotine molecules with increasing temperature and humidity, which could significantly accelerate the volatile release of a small amount of nicotine, the nicotine release under different conditions could be evaluated. Based on this strategy, it was possible to obtain the storage or placement conditions of the product. The results of this study provide a reference to clarify the volatile release of nicotine under various storage conditions, which is helpful for better regulation of the levels of nicotine in snus. Moreover, such destruction-free evaluation of the volatile release of nicotine from snus products under different storage conditions opens up new perspectives for further research about the impact of nicotinoids on smokers' health and cessation programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences Kunming 650000 China
| | - Yonghua Pan
- Hongta Tobacco (Group) Co., Ltd. Yuxi 653100 China
| | - Zhengfeng Li
- The Raw Material Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xiaofeng Shen
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xia Zhang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xianghu Tang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Xin Feng
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xingjiu Huang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| |
Collapse
|
9
|
SERS-active plasmonic metal NP-CsPbX 3 films for multiple veterinary drug residues detection. Food Chem 2023; 412:135420. [PMID: 36764211 DOI: 10.1016/j.foodchem.2023.135420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Sensitive and multiple veterinary drug residues detection is of important for food safety. Herein, uniform plasmonic Au nanobipyramids@Ag nanorods (Au NBP@Ag NR)-CsPbX3 films with strong surface-enhanced Raman scattering (SERS) activity were constructed. The effects of different CsPbX3 (X = Cl, Br, I, or mixed halogens) quantum dots (QDs) on the SERS performances of plasmonic metal NP films were investigated. CsPbI3 QDs with large dielectric constant could be served as the dielectric media to retard the attenuation of electromagnetic evanescent wave, inducing strong electromagnetic strength for SERS enhancement. Plasmon-induced metal-to-perovskite interfacial charge transfer transition also contributed to SERS enhancement. SERS-active plasmonic Au NBP@Ag NR-CsPbI3 films had excellent sensitivity and high reproducibility for quantitative, accurate and multiple detection of chloramphenicol, diazepam and malachite green in food matrix. This work deepened the understanding of the SERS enhancement mechanisms of plasmonic metal NP-perovskite hybrid heterostructures, showing potential prospects in food safety monitoring.
Collapse
|
10
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
11
|
He L, Xu H, Luo J, Ding K, Tan J, Hu J. Interfacial-Shear-Mediated Snowball Assembly of Hotspot-Rich Silver Pompon Architectures for Tailored Surface-Enhanced Raman Scattering Responses. J Phys Chem Lett 2022; 13:10621-10626. [PMID: 36350107 DOI: 10.1021/acs.jpclett.2c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To gain superior signal-enhanced performance, metal nanocrystals serving as building blocks can be collectively assembled into a hierarchically ordered structure for creating multiple hotspots. However, the collaborative assembly of anisotropic crystals to form a hotspot-rich structure remains a challenging task. In this study, controllable shear was introduced to a soft liquid-liquid interface to provide a unique environment for the snowball assembly of silver pompon architectures (Ag-PAs). Micrometer-scale 3D plasmonic Ag pompon architectures composed of densely packed nanoparticles (NPs) are fabricated using shear-mediating crystal growth dynamics. The crystal morphology and size are easily controlled by tuning the interfacial shear and diffusion pathways. The hotspot-rich Ag-PAs with high sensitivity (LOD = 1.1 × 10-13 mol/L) exhibit a superior Raman enhancement performance, which is comparable to some bimetals.
Collapse
Affiliation(s)
- Lili He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hanyun Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Kuixing Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jun Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|
12
|
Moldovan R, Toma V, Iacob BC, Știufiuc RI, Bodoki E. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. SENSORS (BASEL, SWITZERLAND) 2021; 22:236. [PMID: 35009779 PMCID: PMC8749543 DOI: 10.3390/s22010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Extensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate. In the current paper, we compared off-resonance gold nanobones (GNBs) with on-resonance GNBs and gold nanorods (GNRs) in both colloidal dispersion and as close-packed films self-assembled at liquid-liquid interface. Rhodamine 6G (R6G) was used as a Raman reporter in order to evaluate SERS performances. A 17-, 18-, and 55-fold increase in the Raman signal was observed for nanostructures (off-resonance GNBs, on-resonance GNBs, and on-resonance GNRs, respectively) assembled at liquid-liquid interface compared to the same nanostructures in colloidal dispersion. SERS performances of off-resonance GNBs were superior to on-resonance nanostructures in both cases. Furthermore, when off-resonance GNBs were assembled at the liquid interface, a relative standard deviation of 4.56% of the recorded signal intensity and a limit of detection (LOD) of 5 × 10-9 M could be obtained for R6G, rendering this substrate suitable for analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| | - Valentin Toma
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (V.T.); (R.I.Ș.)
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| | - Rareș Ionuț Știufiuc
- MedFuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (V.T.); (R.I.Ș.)
- Pharmaceutical-Biophysics Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (R.M.); (B.-C.I.)
| |
Collapse
|
13
|
Point-of-care testing of methylamphetamine with a portable optical fiber immunosensor. Anal Chim Acta 2021; 1192:339345. [DOI: 10.1016/j.aca.2021.339345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
|
14
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Liu D, Liu C, Yuan Y, Zhang X, Huang Y, Yan S. Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection. Anal Chem 2021; 93:10672-10678. [PMID: 34308643 DOI: 10.1021/acs.analchem.1c02139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For its ultrahigh sensitivity, the microfluidic system combined with surface-enhanced Raman spectroscopy (SERS) becomes one of the most interesting topics in integrated online monitoring related fields. In previous reports, the commonest surface plasmon-enhanced substrates in microfluidics consist of immobilized metal nanostructures on the channel surface to overcome the disturbance of Brownian motion. In this work, a hybrid optoplasmonic microfluidic conveyer is developed, in which the movable, highly ordered optoplasmonic particles are delivered to the detection spot for SERS detection. Here, the optoplasmonic particle is the SiO2 microsphere with in situ photochemical reduced Ag nanoparticles on the surface. Because of the converged light at the SiO2 microsphere surface, the SERS spectra collected at this optoplasmonic particle in the channel exhibit excellent performance, which is confirmed by the simulated electric field distribution. In addition, the experimental data also demonstrate that the quantitative analysis is achieved at 1 nM in this optoplasmonic microfluidic conveyer. Furthermore, the used optoplasmonic particle can be ejected from the microfluidic channel by modulating the velocity of injected fluid such that the new optoplasmonic particle will be delivered to the detection spot for repeatable SERS detection in the same channel. The dynamic process of optoplasmonic particle transport is investigated in this microconveyer, and the built theoretical model to predict the particle release is highly identical with the experimental data. These data point out that our hybrid optoplasmonic microfluidic conveyer has repeatable enhanced substrates with the high SERS sensitivity to overcome the cross-contamination of different target molecules in repeatable detection.
Collapse
Affiliation(s)
- Danyang Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Chuanyu Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuan Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.,Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xin Zhang
- Chongqing Industry Polytechnic College, Chongqing 400044, China
| | - Yingzhou Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.,Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Wang H, Xue Z, Wu Y, Gilmore J, Wang L, Fabris L. Rapid SERS Quantification of Trace Fentanyl Laced in Recreational Drugs with a Portable Raman Module. Anal Chem 2021; 93:9373-9382. [PMID: 34191499 DOI: 10.1021/acs.analchem.1c00792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rapid identification and quantification of opioid drugs are of significant importance and an urgent need in drug regulation and control, considering the serious social and economic impact of the opioid epidemic in the United States. Unfortunately, techniques for accurate detection of these opioids, particularly for fentanyl, an extremely potent synthetic drug of abuse and a main perpetrator in the opioid crisis, are often not readily accessible. Therefore, a fast, highly sensitive, and preferably quantitative technique, with excellent portability, is highly desirable. Such a technique can potentially offer timely and crucial information for drug control officials, as well as health professionals, about drug distribution and overdose prevention. We therefore propose a portable surface-enhanced Raman scattering (SERS) approach by pairing an easy to perform yet reliable SERS protocol with a compact Raman module suitable for rapid, on-site identification and quantification of trace fentanyl. Fentanyl spiked in urine control was successfully detected at concentrations as low as 5 ng/mL. Portable SERS also enabled detection of trace fentanyl laced in recreational drugs at mass concentrations as low as 0.05% (5 ng in 10 μg total) and 0.1% (10 ng in 10 μg total) in heroin and tetrahydrocannabinol (THC), respectively. Drug interaction with the nanoparticle surface was simulated through molecular dynamics to investigate the molecular adsorption mechanism and account for SERS signal differences observed for opioid drugs. Furthermore, resolution of fentanyl in binary and ternary opioid mixtures was readily achieved with multivariate data analysis. In sum, we developed a rapid, highly sensitive, and reliably quantitative method for trace fentanyl analysis by synergizing a streamlined SERS procedure and a portable Raman module at low cost.
Collapse
Affiliation(s)
- Hao Wang
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Zhaolin Xue
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yuxuan Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - John Gilmore
- Hamamatsu Corporation, 360 Foothill Road, Bridgewater, New Jersey 08807, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Burtsev V, Erzina M, Guselnikova O, Miliutina E, Kalachyova Y, Svorcik V, Lyutakov O. Detection of trace amounts of insoluble pharmaceuticals in water by extraction and SERS measurements in a microfluidic flow regime. Analyst 2021; 146:3686-3696. [PMID: 33955973 DOI: 10.1039/d0an02360d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detection of trace amounts of poorly water-soluble pharmaceuticals or related (bio)solutions represents a key challenge in environment protection and clinical diagnostics. However, this task is complicated by low concentrations of pharmaceuticals, complex sample matrices, and sophisticated sample preparative routes. In this work, we present an alternative approach on the basis of an on-line flow extraction procedure and SERS measurements performed in a microfluidic regime. The advantages of our approach were demonstrated using ibuprofen (Ibu), which is considered as a common pharmaceutical contaminant in wastewater and should be monitored in various bioliquids. The extraction of Ibu from water to the dichloromethane phase was performed with an optimized microfluidic mixer architecture. As SERS tags, lipophilic functionalized gold multibranched nanoparticles (AuMs) were added to the organic phase. After microfluidic extraction, Ibu was captured by the functionalized AuM surface and recognized by on-line SERS measurements with up to 10-8 M detection limit. The main advantages of the proposed approach can be regarded as its simplicity, lack of need for preliminary sample preparation, high reliability, the absence of sample pretreatment, and low detection limits.
Collapse
Affiliation(s)
- Vasilii Burtsev
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Mariia Erzina
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Olga Guselnikova
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Elena Miliutina
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| | - Yevgeniya Kalachyova
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic.
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic. and Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation
| |
Collapse
|
18
|
Ye Z, Li C, Chen Q, Xu Y, Bell SEJ. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. NANOSCALE 2021; 13:5937-5953. [PMID: 33650605 DOI: 10.1039/d0nr08803j] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded. Similarly, it is useful to transform liquid plasmonic arrays into easy-to-handle free-standing solid films but these can only be used as solid SERS substrates if the process leaves the surface nanoparticles exposed. Here, we review the progress made in these research areas and discuss how these developments may lead towards achieving rational construction of tailored SERS substrates for sensitive and quantitative SERS analysis.
Collapse
Affiliation(s)
- Ziwei Ye
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| | | | | | | | | |
Collapse
|
19
|
Lu M, Zhu H, Hong L, Zhao J, Masson JF, Peng W. Wavelength-Tunable Optical Fiber Localized Surface Plasmon Resonance Biosensor via a Diblock Copolymer-Templated Nanorod Monolayer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50929-50940. [PMID: 33136359 DOI: 10.1021/acsami.0c09711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Well-dispersed and dense layers of gold nanorods (AuNRs) on optical fibers are shown to regulate the longitudinal peak wavelength and enhance the sensing performances of localized surface plasmon resonance (LSPR) biosensors. A simple self-assembly method relying on a brush-like monolayer of poly(styrene)-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer was used to immobilize AuNRs with various aspect ratios from 2.33 to 4.60 on optical fibers. Both the experimental and simulation results illustrated that the particle aspect ratio, deposition time (related to the coverage of AuNRs), and interparticle gap significantly affected the optical properties of the fiber-based LSPR biosensors. The highest refractive index (RI) sensitivity of the sensor was 753 nm/RIU, while the limit of detection for human IgG was as low as 0.8 nM. Compared with standard nanoparticle deposition methods of polyelectrolytes or alkoxysilanes, the RI sensitivity of the PS-b-PAA dip-coating method was approximately 3-fold better, a consequence of the higher particle coverage and fewer AuNR aggregates. The presented AuNR-based LSPR sensors could regulate the detection range by tuning the aspect ratios of AuNRs. Applicability is demonstrated via quantitative analysis of antigen-antibody interactions, DNA sensing, and surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Mengdi Lu
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hu Zhu
- Department of Chemistry, University of Toronto, Ontario M5S3H6, Canada
| | - Long Hong
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jijun Zhao
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Jean-Francois Masson
- Département de Chimie, Regroupement Québécois des Matériaux de Pointe, and Centre Québécois sur les Matériaux Fonctionnels (CQMF), Université de Montréal, Montreal H3C 3J7, Quebec, Canada
| | - Wei Peng
- College of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
20
|
Zhang D, You H, Zhang L, Fang J. Facile Surface Modification of Mesoporous Au Nanoparticles for Highly Sensitive SERS Detection. Anal Chem 2020; 92:15379-15387. [PMID: 33171039 DOI: 10.1021/acs.analchem.0c02781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The stability, dispersity, and surface chemical properties of colloidal nanoparticles are crucial for the reliable and desired chemical sensing in various applications. Here, we report an effective strategy to engineer the surface properties of mesoporous Au nanoparticles (meso-Au NPs) via PVP ligand modification, template removal, and surface purification. Monodispersed 3D meso-Au NPs with well-defined sizes and shapes were obtained using a general soft-enveloping strategy. During surface modification, the addition of PVP ligands and the concentration of HF solutions play key roles in the stability, shape, and size distributions of ordered Au networks. In order to obtain an improved sensing performance, the morphologies of meso-Au NPs were optimized with smaller mesopore size, and NaBH4 solution was used to efficiently remove the adsorbed PVP ligands. Due to the characteristics of high-density porosities and large surface area, the purified meso-Au NPs could be a kind of promising plasmonic-enhanced nanomaterial and provide abundant "hot spots." Combined with the enrichment effect using a slippery liquid-infused porous surface, the lowest detection limits of crystal violet molecule could be down to 0.1 pM, demonstrating an excellent SERS sensitivity. Moreover, a realistic illegal drug containing aspirin could be sensitively detected with a limit of 2.8 × 10-6 M, showing great potential for practical molecular sensing and applications.
Collapse
Affiliation(s)
- Dongjie Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Hongjun You
- School of Science, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Lingling Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Jixiang Fang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| |
Collapse
|
21
|
Pu H, Huang Z, Xu F, Sun DW. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem 2020; 343:128548. [PMID: 33221103 DOI: 10.1016/j.foodchem.2020.128548] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/31/2020] [Indexed: 02/02/2023]
Abstract
The development of substrate with high sensitivity and good reproducibility for surface-enhanced Raman scattering (SERS) detection of contaminants in foods has attracted more and more attention. Herein, a stable two-dimensional (2D) Au-Ag core-shell nanorods (Au@Ag NRs) nanoarray substrate with high-performance SERS activity was developed based on interface self-assembly strategy and successfully applied to the detection of thiram in apple sample. A broad linearity range of 0.01-10 mg/L and a low limit of detection of 0.018 mg/L were achieved for thiram solution. The substrate was stable and exhibited satisfactory sensitivity after preserving at ambient temperature for 4 weeks. Furthermore, this method presented the comparable result to that acquired from high-performance liquid chromatography (HPLC) with satisfactory recoveries of 93-116%. The study indicated that the prepared Au@Ag NRs nanoarray substrate was promising for SERS detection of contaminants such as pesticides in foods.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhibin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Wang Y, Zhao X, Yu Z, Xu Z, Zhao B, Ozaki Y. A Chiral‐Label‐Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew Chem Int Ed Engl 2020; 59:19079-19086. [DOI: 10.1002/anie.202007771] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xueqi Zhao
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Zhi Yu
- State Key Laboratory of Applied Optics Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
| | - Zhangrun Xu
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yukihiro Ozaki
- Department of Chemistry School of Science and Technology Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
- Toyota Physical and Chemical Research Institute Nagakute Aichi 480-1192 Japan
| |
Collapse
|
23
|
Wang Y, Zhao X, Yu Z, Xu Z, Zhao B, Ozaki Y. A Chiral‐Label‐Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xueqi Zhao
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Zhi Yu
- State Key Laboratory of Applied Optics Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
| | - Zhangrun Xu
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yukihiro Ozaki
- Department of Chemistry School of Science and Technology Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
- Toyota Physical and Chemical Research Institute Nagakute Aichi 480-1192 Japan
| |
Collapse
|
24
|
Lin X, Fang G, Liu Y, He Y, Wang L, Dong B. Marangoni Effect-Driven Transfer and Compression at Three-Phase Interfaces for Highly Reproducible Nanoparticle Monolayers. J Phys Chem Lett 2020; 11:3573-3581. [PMID: 32293181 DOI: 10.1021/acs.jpclett.0c01116] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate highly reproducible nanoparticle monolayers. Nanoparticles could be easily transferred and compressed from the lower O/W interface to the upper O/W interface due to the interfacial tension gradient. The O/W/O system can be constructed using different kinds of organic solvents. Through this approach, good uniformity and reproducibility of the nanoparticle monolayers could be guaranteed even using a wide range of nanoparticle concentrations. Furthermore, this strategy is generally applicable to various nanoparticles with different sizes, shapes, components, and surface ligands, which offers a facile and general approach to functional nanodevices.
Collapse
Affiliation(s)
- Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Guoqiang Fang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Yuanlan Liu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Yangyang He
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Li Wang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
25
|
Qin M, Zhou X, Zhu J, Ma M, Wang H, Yang L. Synthesis of gold nanorods with varied length-diameter ratios-applications using SERS for the detection of drugs. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Miao Qin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Xia Zhou
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Jun Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Mutian Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Liangbao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
26
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
27
|
Wu P, Zhong LB, Liu Q, Zhou X, Zheng YM. Polymer induced one-step interfacial self-assembly method for the fabrication of flexible, robust and free-standing SERS substrates for rapid on-site detection of pesticide residues. NANOSCALE 2019; 11:12829-12836. [PMID: 31184679 DOI: 10.1039/c9nr02851j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have demonstrated a one-step approach for the fabrication of flexible, robust, reproducible and free-standing SERS substrates (AuNPs/polyvinyl chloride (PVC) film) through a polymer induced interfacial self-assembly method. In this method, the polymer (PVC) plays dual roles, that is, inducing the interfacial self-assembly of nanoparticles and fixing the assembled nanostructure in the PVC matrix. As the assembled nanoparticles are orderly half-embedded in the PVC film, the AuNPs/PVC film exhibits outstanding reproducibility and stability. In addition, the film could be easily regenerated by rinsing with NaBH4 solution. As a proof of concept, the film was directly wrapped on an apple surface for in situ detection of pesticide residues, and a detection limit of 10 ng cm-2 thiram was achieved. Furthermore, rapid on-site and in situ detection of multi-pesticide residues has been proved to be feasible with the aid of a portable Raman spectrometer. Due to its simple preparation, good reliability, outstanding stability and reusability, the AuNPs/PVC film has great potential in practical applications.
Collapse
Affiliation(s)
- Peng Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Lu-Bin Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China and University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. and CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China and University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
28
|
Zhang H, Yuan Y, Yan S, Lou K, Gao Y, Wang S, Huang Y. On-chip 3D SERS materials produced by self-assemble of copper microparticle and galvanic replacement reaction. APPLIED OPTICS 2019; 58:4720-4725. [PMID: 31251294 DOI: 10.1364/ao.58.004720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has powerful capabilities in the field of environmental analysis and biological diagnostics because of its instinctive properties of high sensitivity and label-free detection. However, the fabrication of SERS substrate requires complicated processes and expensive equipment. This paper proposes a simple method approach to synthesize a 3D SERS substrate via electroless galvanic replacement reaction inside a microfluidic channel. Copper microparticles are assembled in a microfluidic channel, and silver nitrate solution is pumped into the channel to in situ produce the silver nanoparticles (Ag NPs) on the surface of copper microparticles. Because the copper particles occupy the channel by stack, the 3D Cu@AgNP SERS substrate can be obtained. The probing molecule (methylene blue) was utilized to investigate with the limit of detection (1×10-7 M). The biological molecules (urea and melamine) have been used to demonstrate its benefits in medical applications, and cancer cell detection has been implemented to demonstrate its benefits in cell biology. In addition, the device can filter and wash cells, forming a simple and fast filter. Our work on this simple fabrication method of active SERS substrate has great value for medical and biological applications.
Collapse
|
29
|
Dong J, Zhao X, Gao W, Han Q, Qi J, Wang Y, Guo S, Sun M. Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application. NANOSCALE RESEARCH LETTERS 2019; 14:118. [PMID: 30941536 PMCID: PMC6445920 DOI: 10.1186/s11671-019-2946-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
The unique photonic effect of self-assembled metal nanoparticles is widely used in many applications. In this article, we prepared self-assembled gold nanorod (GNR) vertical arrays substrate by an evaporation method and found that the morphology of the substrate can be effectively regulated by changing the immersion time in the target molecules solution to obtain different Raman enhancement effects. We separately calculated the local electromagnetic field of the GNR vertical arrays and disorder substrate by the finite element method (FEM), which was consistent with the experimental results. Based on optimal soaking time, the sensitivity, reproducibility, and stability of substrates were separately studied. The experimental results show that the GNR vertical arrays can detect Rhodamine 6G (Rh6G) at concentrations as low as 10-11 M and exhibit good reproducibility and stability due to local electromagnetic (EM) field enhancement caused by the coupling of adjacent nanorods. Thus, our work can demonstrate that the substrate has excellent surface-enhanced Raman scattering (SERS) activity and the obtained GNR vertical arrays have great potential for biosensor and biodetection.
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Xing Zhao
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Wei Gao
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Qingyan Han
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Jianxia Qi
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Yongkai Wang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Sandong Guo
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Center for Green Innovation, University of Science and Technology Beijing, Beijing, 100083 China
| |
Collapse
|
30
|
Li P, He H, Lin D, Yang L. Highly sensitive detection of an antidiabetic drug as illegal additives in health products using solvent microextraction combined with surface-enhanced Raman spectroscopy. Analyst 2019; 144:7406-7411. [DOI: 10.1039/c9an01688k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined SME-SERS approach realized the effective separation and sensitive detection of illegal drug additives spiked in different healthy products.
Collapse
Affiliation(s)
- Pan Li
- Anhui Province Key Laboratory of Medical Physics and Technology
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Huan He
- Anhui Province Key Laboratory of Medical Physics and Technology
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Dongyue Lin
- Anhui Province Key Laboratory of Medical Physics and Technology
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology
- Center of Medical Physics and Technology
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| |
Collapse
|
31
|
Guo S, Wang Y, Zhang F, Gao R, Liu M, Dong L, Liu Y, Zhang Y, Chen L. In Situ Synthesis of Ag@Cu₂O-rGO Architecture for Strong Light-Matter Interactions. NANOMATERIALS 2018; 8:nano8060444. [PMID: 29914218 PMCID: PMC6027245 DOI: 10.3390/nano8060444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Emerging opportunities based on two-dimensional (2D) layered structures can utilize a variety of complex geometric architectures. Herein, we report the synthesis and properties of a 2D+0D unique ternary platform-core-shell nanostructure, termed Ag@Cu₂O-rGO, where the reduced graphene oxide (rGO) 2D acting as a platform is uniformly decorated by Ag@Cu₂O core-shell nanoparticles. Cu₂O nanoparticles occupy the defect positions on the surface of the rGO platform and restore the conjugation of the rGO structure, which contributes to the significant decrease of the ID/IG intensity ratio. The rGO platform can not only bridge the isolated nanoparticles together but also can quickly transfer the free electrons arising from the Ag core to the Cu₂O shell to improve the utilization efficiency of photogenerated electrons, as is verified by high efficient photocatalytic activity of Methyl Orange (MO). The multi-interface coupling of the Ag@Cu₂O-rGO platform-core-shell nanostructure leads to the decrease of the bandgap with an increase of the Cu₂O shell thickness, which broadens the absorption range of the visible light spectrum.
Collapse
Affiliation(s)
- Shuang Guo
- College of Physics, Jilin Normal University, Siping 136000, China.
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yaxin Wang
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Fan Zhang
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Renxian Gao
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Maomao Liu
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Lirong Dong
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Lei Chen
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| |
Collapse
|