1
|
Arribat M, Cavelier F, Rémond E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Adv 2020. [DOI: 10.1039/c9ra10917j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strategies for the preparation of phosphorus-containing amino acids and their utility in the organic chemistry, physico-chemistry, agrochemistry, and pharmacology fields are reported.
Collapse
Affiliation(s)
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| |
Collapse
|
2
|
Gorle AK, Berners-Price SJ, Farrell NP. Biological relevance of interaction of platinum drugs with O-donor ligands. Inorganica Chim Acta 2019; 495:118974. [PMID: 31354168 PMCID: PMC6660021 DOI: 10.1016/j.ica.2019.118974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum complexes with S and N-donor small molecule ligands have received much attention with respect to understanding of Pt-protein and Pt-DNA(RNA) interactions in biology. Oxygen-donor ligands have received less attention, partly due to the fact that as a hard Lewis base, oxygen-donor interactions are expected to be less favourable for the soft Lewis acid properties of Pt(II), especially. Yet, it is now clear that for a full understanding of the cellular fate of platinum complexes, a plethora of oxygen-donor interactions are possible, considering extracellular and intracellular concentrations of simple anions in buffer. Further, the importance of the general class of glycans, the third major class of biomolecules after proteins and nucleic acids, contain many specific examples of important biomolecules such as sialic acids and sulphated glycosaminoglycans capable of metal complex interactions. In this contribution we summarise some important kinetic and thermodynamic aspects of platinum-oxygen-donor ligand interactions and their relevance to examples of biomolecular interactions contributing to the overall profile of platinum (and metal complexes in general) biology.
Collapse
Affiliation(s)
- Anil K Gorle
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Susan J Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, 23284, Virginia, USA
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| |
Collapse
|
3
|
Gorle AK, Zhang J, Berners-Price SJ, Farrell NP. Influence of geometric isomerism on the binding of platinum anticancer agents with phospholipids. Dalton Trans 2019; 48:9791-9800. [PMID: 31070627 PMCID: PMC6699998 DOI: 10.1039/c9dt00753a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a detailed NMR and DFT study of the interaction of the 15N-labelled dinuclear platinum anticancer compound [{cis-PtCl(NH3)2}2{μ-H2N(CH2)6NH2}]2+ (15N-1, 1,1/c,c) with 1,2-dihexanoyl-sn-glycero-3-phosphate (DHPA), as a comparison with an earlier study of the interaction of the same water-soluble phospholipid fragment with the geometric trans isomer (1,1/t,t). The reaction of 15N-1 with the sodium salt of DHPA was studied at 298 K, pH ∼ 5.6, by [1H,15N] HSQC 2D NMR spectroscopy. The NMR data, supported by DFT models, provide evidence that the monofunctional DHPA adduct of 15N-1 exists in two conformational forms, with different orientation of the (CH2)6 linker; one has an interaction between the unbound {PtN3Cl} moiety and the coordinated DHPA molecule. Similarly, two bifunctional adduct conformers are identified, in which one has an interaction between the phosphate groups of the two bound DHPA molecules. When compared to the previously reported reactions of 1,1/t,t with DHPA, equilibrium conditions of the 1,1/c,c reaction are reached more slowly (120 h), similar to the reaction with phosphate. The rate constant for the first step of DHPA binding (kL) is slightly lower (1.6 fold) for the cis-compared to the trans-isomer, whereas the rate constant for the reverse reaction is 4-fold lower, resulting in a much greater proportion of DHPA bound species at equilibrium.
Collapse
Affiliation(s)
- Anil K Gorle
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia.
| | | | | | | |
Collapse
|
4
|
Meng T, Qin QP, Wang ZR, Peng LT, Zou HH, Gan ZY, Tan MX, Wang K, Liang FP. Synthesis and biological evaluation of substituted 3-(2'-benzimidazolyl)coumarin platinum(II) complexes as new telomerase inhibitors. J Inorg Biochem 2018; 189:143-150. [PMID: 30265997 DOI: 10.1016/j.jinorgbio.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/08/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022]
Abstract
Eight new platinum(II) complexes Pt1-Pt8 with substituted 3‑(2'‑benzimidazolyl) coumarins were successfully synthesized and characterized by single crystal X-ray diffraction analysis, nuclear magnetic resonance spectroscopy (NMR), electrospray ionization-mass spectrometry (ESI-MS), infrared spectrophotometry (IR) and elemental analysis. Crystallographic data of these Pt1-Pt8 complexes showed that the Pt(II) has distorted four-coordinated square planar geometry. Pt1-Pt8 were found to display high cytotoxic activity in vitro against the cisplatin-resistant SK-OV-3/DDP cancer cells with a low IC50 from 1.01-10.32 μM, but low cytotoxicity on the normal HL-7702 cells. Further studies revealed that Pt1-Pt3 induced apoptosis in SK-OV-3/DDP cancer cells via mitochondria dysfunction signaling pathways. Our findings also indicated that Pt1 was a telomerase inhibitor targeting c-myc promoter elements.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Zhen-Rui Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Li-Ting Peng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zhen-Yuan Gan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|