1
|
Bizeau J, Adam A, Bégin‐Colin S, Mertz D. Serum Albumin Antifouling Effects of Hydroxypropyl‐Cellulose and Pluronic F127 Adsorbed on Isobutyramide‐Grafted Stellate Silica Nanoparticles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joëlle Bizeau
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Alexandre Adam
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR-7504 CNRS-Université de Strasbourg 23 rue du Lœss BP 34 67034 Strasbourg Cedex 2 France
| |
Collapse
|
2
|
Wu Q, Ou H, Shang Y, Zhang X, Wu J, Fan F. Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2695-2709. [PMID: 34188448 PMCID: PMC8232383 DOI: 10.2147/dddt.s311107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the most common cancer worldwide. Although significant advances in screening have been made and early diagnosis strategies and therapeutic regimens have been developed, the overall survival rate remains bleak. Curcumin is extracted from the rhizomes of turmeric and exhibits a wide range of biological activities. In lung cancer, evidence has shown that curcumin can markedly inhibit tumor growth, invasion and metastasis, overcome resistance to therapy, and even eliminate cancer stem cells (CSCs). Herein, the underlying molecular mechanisms of curcumin were summarized by distinct biological processes. To solve the limiting factors that curtail the clinical applications of curcumin, nanoformulations encapsulating curcumin were surveyed in detail. Nanoparticles, including liposomes, micelles, carbon nanotubes (CNTs), solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions, were explored as proper carriers of curcumin. Moreover, it was firmly verified that curcumin has the ability to sensitize lung cancer cells to chemotherapeutic drugs, such as cisplatin and docetaxel, and to various targeted therapies. Regarding the advantages and drawbacks of curcumin, we concluded that combination therapy based on nanoparticles would be the optimal approach to broaden the application of curcumin in the clinic in the near future.
Collapse
Affiliation(s)
- Quhui Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huiping Ou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yan Shang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Xi Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Junyong Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fuyuan Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
3
|
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins. NANOMATERIALS 2021; 11:nano11051346. [PMID: 34065322 PMCID: PMC8161383 DOI: 10.3390/nano11051346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.
Collapse
|
4
|
Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin‐Colin S, Hébraud A. Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Jacky Goetz
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Dominique Bégin
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Guy Schlatter
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Anne Hébraud
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
5
|
Wu L, Ji X, Kong J. Polymer-Coated Mesoporous Carbon as Enzyme Platform for Oxidation of Bisphenol A in Organic Solvents. ACS OMEGA 2019; 4:16409-16417. [PMID: 31616819 PMCID: PMC6787886 DOI: 10.1021/acsomega.9b01945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 05/08/2023]
Abstract
Bisphenol A (BPA) is not only a widely used chemical but also a toxic pollutant, and its biodegradation in an aqueous environment is hard due to its near insolubility in water. While the enzyme tyrosinase can oxidize BPA in organic solvents, it does so only very slowly. In the present study, we have found that in toluene the catalytic activity of tyrosinase deposited onto coated mesoporous carbon is significantly enhanced when the support is precoated with polyethylenimine. The resultant enzymatically formed o-quinone is both easily recoverable and potentially useful monomer. As a particular example, the o-quinone readily reacts with diamine in toluene to form poly(amino-quinone) polymers, which are suitable for anticorrosion, energy storage, or biosensor applications.
Collapse
Affiliation(s)
- Lidong Wu
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture, Chinese Academy
of Fishery Sciences, Beijing 100141, China
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiang Ji
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing Kong
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 2019; 14:6387-6406. [PMID: 31496693 PMCID: PMC6691944 DOI: 10.2147/ijn.s210992] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is an emerging field which has created great opportunities either through the creation of new materials or by improving the properties of existing ones. Nanoscale materials with a wide range of applications in areas ranging from engineering to biomedicine have been produced. Gold nanoparticles (AuNPs) have emerged as a therapeutic agent, and are useful for imaging, drug delivery, and photodynamic and photothermal therapy. AuNPs have the advantage of ease of functionalization with therapeutic agents through covalent and ionic binding. Combining AuNPs and other materials can result in nanoplatforms, which can be useful for biomedical applications. Biomaterials such as biomolecules, polymers and proteins can improve the therapeutic properties of nanoparticles, such as their biocompatibility, biodistribution, stability and half-life. Serum albumin is a versatile, non-toxic, stable, and biodegradable protein, in which structural domains and functional groups allow the binding and capping of inorganic nanoparticles. AuNPs coated with albumin have improved properties such as greater compatibility, bioavailability, longer circulation times, lower toxicity, and selective bioaccumulation. In the current article, we review the features of albumin, as well as its interaction with AuNPs, focusing on its biomedical applications.
Collapse
Affiliation(s)
- Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Marcelo J Kogan
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Dragar Č, Potrč T, Nemec S, Roškar R, Pajk S, Kocbek P, Kralj S. One-Pot Method for Preparation of Magnetic Multi-Core Nanocarriers for Drug Delivery. MATERIALS 2019; 12:ma12030540. [PMID: 30759725 PMCID: PMC6384742 DOI: 10.3390/ma12030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.
Collapse
Affiliation(s)
- Črt Dragar
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Tanja Potrč
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Biophysics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|