1
|
Huvelle S, Matton P, Tran C, Rager MN, Haddad M, Ratovelomanana-Vidal V. Synthesis of Benzo[ c][2,7]naphthyridinones and Benzo[ c][2,6]naphthyridinones via Ruthenium-Catalyzed [2+2+2] Cycloaddition between 1,7-Diynes and Cyanamides. Org Lett 2022; 24:5126-5131. [PMID: 35816408 DOI: 10.1021/acs.orglett.2c01963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convenient method for the ruthenium-catalyzed synthesis of benzo[c]naphthyridinone derivatives is reported. The [2+2+2] cycloaddition from various mono- and disubstituted 1,7-diynes and cyanamides provided benzo[c][2,7]naphthyridinones as major products and benzo[c][2,6]naphthyridinones as minor ones in yields of ≤79% and regioselectivities of ≤99:1. This method is amenable to internal and terminal diynes and a number of cyanamides with diverse functional group tolerance.
Collapse
Affiliation(s)
- Steve Huvelle
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Pascal Matton
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Christine Tran
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Marie-Noelle Rager
- PSL Research University, Chimie ParisTech, NMR Facility, F-75005 Paris, France
| | - Mansour Haddad
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| |
Collapse
|
2
|
Das Adhikari GK, Pati BV, Nanda T, Biswal P, Banjare SK, Ravikumar PC. Co(II)-Catalyzed C-H/N-H Annulation of Cyclic Alkenes with Indole-2-carboxamides at Room Temperature: One-Step Access to β-Carboline-1-one Derivatives. J Org Chem 2022; 87:4438-4448. [PMID: 35226810 DOI: 10.1021/acs.joc.1c02716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein a cobalt-catalyzed 8-aminoquinoline-directed highly regio- and stereoselective C-H/N-H activation annulation of indole-2-carboxamides with 1,2-dihydronaphthalene for the synthesis of β-carboline-1-one derivatives at room temperature. A cheaper and commercially available cobalt catalyst has been used for this transformation. The protocol tolerates a wide range of functionalities, affording β-carboline-1-one derivatives in good yields. An initial mechanistic study revealed a reversible cyclometalation to be operative.
Collapse
Affiliation(s)
- Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Pragati Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
3
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Li CJ. Crystal structure of 6-(quinolin-8-yl)benzo[ a]phenanthridin-5(6 H)-one, C 26H 16N 2O. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H16N2O, monoclinic, P21/c (no. 14), a = 12.3329(2) Å, b = 12.9276(2) Å, c = 12.11250(10) Å, β = 114.047(2)°, V = 1763.55(5) Å3, Z = 4, R
gt
(F) = 0.0416, wR
ref
(F
2) = 0.1137, T = 293(2) K.
Collapse
Affiliation(s)
- Chuan-Jun Li
- Department of Traditional Chinese Medicine , Luohe Medical College , Luohe , 462002 , Henan , P. R. China
| |
Collapse
|
5
|
Bansal S, Shabade AB, Punji B. Advances in C(
sp
2
)−H/C(
sp
2
)−H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
6
|
Grandhi GS, Dana S, Mandal A, Baidya M. Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Org Lett 2020; 22:2606-2610. [DOI: 10.1021/acs.orglett.0c00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
7
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 606] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
8
|
Yang J, Fu X, Tang S, Deng K, Zhang L, Yang X, Ji Y. 2-Amino-5,6-difluorophenyl-1 H-pyrazole-Directed Pd II Catalysis: Arylation of Unactivated β-C(sp 3)-H Bonds. J Org Chem 2019; 84:10221-10236. [PMID: 31313581 DOI: 10.1021/acs.joc.9b01276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Palladium-catalyzed arylation of unactivated β-C(sp3)-H bonds in carboxylic acid derivatives with aryl iodides is described for the first time using 2-amino-5,6-difluorophenyl-1H-pyrazole as an efficient and readily removable directing group. Two fluoro groups are installed at the 5- and 6-position of the anilino moiety in 2-aminophenyl-1H-pyrazole, clearly enhancing the directing ability of the auxiliary. In addition, the protocol employs Cu(OAc)2/Ag3PO4 (1.2/0.3) as additives, evidently reducing the stoichiometric amount of expensive silver salts. Furthermore, this process exhibits high β-site selectivity, compatibility with diverse substrates containing α-hydrogen atoms, and excellent functional group tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianjin Yang
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Science , 345 Lingling Road , Shanghai 200032 , P. R. China
| | | |
Collapse
|
9
|
Large B, Gigant N, Joseph D, Clavier G, Prim D. Site-Selective Arylation of Naphthalenes: a Key Entry towards Extended Fluorenones and Phenanthridinones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Benjamin Large
- ILV; UVSQ; CNRS; Université Paris-Saclay; 78035 Versailles France
| | - Nicolas Gigant
- BioCIS; Université Paris-Sud, CNRS; Université Paris-Saclay; 92296 Châtenay-Malabry France
| | - Delphine Joseph
- BioCIS; Université Paris-Sud, CNRS; Université Paris-Saclay; 92296 Châtenay-Malabry France
| | - Gilles Clavier
- PPSM; CNRS; ENS Paris-Saclay; Université Paris-Saclay; 94235 Cachan France
| | - Damien Prim
- ILV; UVSQ; CNRS; Université Paris-Saclay; 78035 Versailles France
| |
Collapse
|
10
|
Chen C, Hao Y, Zhang TY, Pan JL, Ding J, Xiang HY, Wang M, Ding TM, Duan A, Zhang SY. Computational and experimental studies on copper-mediated selective cascade C-H/N-H annulation of electron-deficient acrylamide with arynes. Chem Commun (Camb) 2019; 55:755-758. [PMID: 30500009 DOI: 10.1039/c8cc08708c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient and convenient copper-mediated method has been developed to achieve direct cascade C-H/N-H annulation to synthesize 2-quinolinones from electron-deficient acrylamides and arynes. This method highlights an emerging but simple strategy to transform inert C-H bonds into versatile functional groups in organic synthesis to provide a new method of synthesizing 2-quinolinones efficiently. Mechanistic investigations by experimental and density functional theory (DFT) studies suggest that an organometallic C-H activation via a Cu(iii) intermediate is likely to be involved in the reaction.
Collapse
Affiliation(s)
- Chao Chen
- Sixth People's Hospital South Campus, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1472] [Impact Index Per Article: 210.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
12
|
Honeycutt AP, Hoover JM. Nickel-Catalyzed Oxidative Decarboxylative Annulation for the Synthesis of Heterocycle-Containing Phenanthridinones. Org Lett 2018; 20:7216-7219. [PMID: 30394749 DOI: 10.1021/acs.orglett.8b03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A nickel-catalyzed oxidative decarboxylative annulation reaction of simple benzamides and (hetero)aromatic carboxylates has been developed. This reaction provides access to a large array of phenanthridinones and their heterocyclic analogues, highlighting the utility and versatility of oxidative decarboxylative coupling strategies for C-C bond formation.
Collapse
Affiliation(s)
- Aaron P Honeycutt
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia , United States
| | - Jessica M Hoover
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia , United States
| |
Collapse
|
13
|
Grandhi GS, Selvakumar J, Dana S, Baidya M. Directed C–H Bond Functionalization: A Unified Approach to Formal Syntheses of Amorfrutin A, Cajaninstilbene Acid, Hydrangenol, and Macrophyllol. J Org Chem 2018; 83:12327-12333. [DOI: 10.1021/acs.joc.8b02116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Jayaraman Selvakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|