1
|
Zhang C, Zhou C, Magassa A, Jin X, Fang D, Zhang X. A platform for mapping reactive cysteines within the immunopeptidome. Nat Commun 2024; 15:9698. [PMID: 39516457 PMCID: PMC11549463 DOI: 10.1038/s41467-024-54139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The major histocompatibility complex class I antigen presentation pathways play pivotal roles in orchestrating immune responses. Recent studies have begun to explore the therapeutic potential of cysteines within the immunopeptidome, such as the use of covalent ligands to generate haptenated peptide neoepitopes for immunotherapy. In this work, we report a platform for mapping reactive cysteines on MHC-I-bound peptide antigens. We develop cell-impermeable sulfonated maleimide probes capable of capturing reactive cysteines on these antigens. Using these probes in chemoproteomic experiments, we discover that cysteines on MHC-I-bound antigens exhibit various degrees of reactivity. Moreover, interferon-gamma stimulation enhances the reactivity of cysteines at position 8 of 9-mer MHC-I-bound antigens. Finally, we demonstrate that targeting reactive cysteines on MHC-I-bound antigens with a maleimide-conjugated Fc-binding cyclic peptide contributes to the induction of antibody-dependent cellular phagocytosis.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Chen Zhou
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Assa Magassa
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaokang Jin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Gallego I, Ramos‐Soriano J, Méndez‐Ardoy A, Cabrera‐González J, Lostalé‐Seijo I, Illescas BM, Reina JJ, Martín N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022; 61:e202210043. [PMID: 35989251 PMCID: PMC9826239 DOI: 10.1002/anie.202210043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/11/2023]
Abstract
Fully substituted peptide/[60]fullerene hexakis-adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis-adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis-adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E-selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials.
Collapse
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Javier Ramos‐Soriano
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,Present address: Glycosystems LaboratoryInstituto de Investigaciones Químicas (IIQ), CSICUniversidad de SevillaAv.Américo Vespucio, 4941092SevilleSpain
| | - Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Justo Cabrera‐González
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Irene Lostalé‐Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| | - Beatriz M. Illescas
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain,Present address: Universidad de Málaga, IBIMADpto. de Química OrgánicaCampus de Teatinos, s/n.29071MálagaSpain,Centro Andaluz de Nanomedicina y Biotecnología, BIONAND, Parque Tecnológico de AndalucíaC/Severo Ochoa, 3529590Campanillas (Málaga)Spain
| | - Nazario Martín
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad Complutense28040MadridSpain,IMDEA-NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiago de CompostelaSpain
| |
Collapse
|
3
|
Gallego I, Ramos-Soriano J, Méndez-Ardoy A, Cabrera-González J, Lostalé-Seijo I, Reina JJ, Illescas BM, Martin N, Montenegro J. A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan Gallego
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Javier Ramos-Soriano
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | | | - Justo Cabrera-González
- Complutense University of Madrid: Universidad Complutense de Madrid Organic Chemistry SPAIN
| | - Irene Lostalé-Seijo
- University of Santiago de Compostela: Universidade de Santiago de Compostela CIQUS SPAIN
| | - Jose J. Reina
- University of Malaga: Universidad de Malaga Organic Chemistry SPAIN
| | - Beatriz M. Illescas
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Nazario Martin
- Complutense University of Madrid: Universidad Complutense de Madrid organic chemistry SPAIN
| | - Javier Montenegro
- Universidad de Santiago de Compostela Departamento de Química Orgánica c/ Jenaro de la Fuente s/n 15782 Santiago de Compostela SPAIN
| |
Collapse
|
4
|
Chatterjee A, Ghosh S, Ghosh C, Das D. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022; 61:e202201547. [PMID: 35578748 DOI: 10.1002/anie.202201547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Shaped through millions of years of evolution, the spatial localization of multiple enzymes in living cells employs extensive cascade reactions to enable highly coordinated multimodal functions. Herein, by utilizing a complex divergent cascade, we exploit the catalytic potential as well as templating abilities of streamlined cross-β amyloid nanotubes to yield two orthogonal roles simultaneously. The short peptide based paracrystalline nanotube surfaces demonstrated the generation of fluorescence signals within entangled networks loaded with alcohol dehydrogenase (ADH). The nanotubular morphologies were further used to generate cascade-driven microscopic motility through surface entrapment of sarcosine oxidase (SOX) and catalase (Cat). Moreover, a divergent cascade network was initiated by upstream catalysis of the substrate molecules through the surface mutation of catalytic moieties. Notably, the resultant downstream products led to the generation of motile fluorescent microswimmers by utilizing the two sets of orthogonal properties and, thus, mimicked the complex cascade-mediated functionalities of extant biology.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
5
|
Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Abstract
We here describe the synthesis and biological evaluation of glycan shields for cell penetrating peptides. A new benzyl alkoxyamine connector was employed for the coupling of two saccharides units in the lateral side chain of individual amino acids in a peptide sequence. The oxyme bond formation with the corresponding glycan aldehydes allowed the preparation of highly glycosylated penetrating peptides with a minimal synthetic effort. Surprisingly, it was found that a four to six saccharide substitution did not decrease uptake efficiency in cells, whereas it significantly improved the toxicity profile of the penetrating peptide. In particular, glucose substitution was confirmed as an optimal glycan shield that showed an excellent in vitro uptake and intracellular localization as well as a superior in vivo biodistribution.
Collapse
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Priegue JM, Louzao I, Gallego I, Montenegro J, Granja JR. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Org Chem Front 2022. [DOI: 10.1039/d1qo01349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide nanotubes deposit on mica surface can be used for the alignment of proteins thank to the use of dynamic covalent bonds that allow the incorporation of appropriate ligands on nanotube surface.
Collapse
Affiliation(s)
- Juan M. Priegue
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iria Louzao
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iván Gallego
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
9
|
González-Freire E, Novelli F, Pérez-Estévez A, Seoane R, Amorín M, Granja JR. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. Chemistry 2021; 27:3029-3038. [PMID: 32986280 DOI: 10.1002/chem.202004127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/25/2023]
Abstract
A new class of amphipathic cyclic peptides, which assemble in bacteria membranes to form polymeric supramolecular nanotubes giving them antimicrobial properties, is described. The method is based on the use of two orthogonal clickable transformations to incorporate different hydrophobic or hydrophilic moieties in a simple, regioselective, and divergent manner. The resulting cationic amphipathic cyclic peptides described in this article exhibit strong antimicrobial properties with a broad therapeutic window. Our studies suggest that the active form is the nanotube resulted from the parallel stacking of the cyclic peptide precursors. Several techniques, CD, FTIR, fluorescence, and STEM, among others, confirm the nanotube formation.
Collapse
Affiliation(s)
- Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Federica Novelli
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Pérez-Estévez
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rafael Seoane
- Department of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Martinent R, Du D, López-Andarias J, Sakai N, Matile S. Oligomers of Cyclic Oligochalcogenides for Enhanced Cellular Uptake. Chembiochem 2020; 22:253-259. [PMID: 32975867 DOI: 10.1002/cbic.202000630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Monomeric cyclic oligochalcogenides (COCs) are emerging as attractive transporters to deliver substrates of interest into the cytosol through thiol-mediated uptake. The objective of this study was to explore COC oligomers. We report a systematic evaluation of monomers, dimers, and trimers of asparagusic, lipoic, and diselenolipoic acid as well as their supramolecular monomers, dimers, trimers, and tetramers. COC dimers were more than twice as active as the monomers on both the covalent and noncovalent levels, whereas COC trimers were not much better than dimers. These trends might suggest that thiol-mediated uptake of COCs is synergistic over both short and long distances, that is, it involves more than two COCs and more than one membrane protein, although other interpretations cannot be excluded at this level of complexity. These results thus provide attractive perspectives for structural evolution as well as imminent use in practice. Moreover, they validate automated HC-CAPA as an invaluable method to collect comprehensive data on cytosolic delivery within a reasonable time at a level of confidence that is otherwise inconceivable.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Dongchen Du
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| |
Collapse
|
11
|
Méndez‐Ardoy A, Reina JJ, Montenegro J. Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry 2020; 26:7516-7536. [DOI: 10.1002/chem.201904834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
12
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
13
|
Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐Varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). Chembiochem 2019; 20:1400-1409. [DOI: 10.1002/cbic.201800720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Bernardo Díaz
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - Ángeles Canales
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - F. Javier Cañada
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
| | - Jorge Guerra‐Varela
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
14
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|