1
|
Ikeshita M, Ma SC, Muller G, Naota T. Linker-dependent control of the chiroptical properties of polymethylene-vaulted trans-bis[(β-iminomethyl)naphthoxy]platinum(II) complexes. Dalton Trans 2024; 53:7775-7787. [PMID: 38619916 DOI: 10.1039/d4dt00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The effects of polymethylene bridges on the chiroptical properties of trans-bis[(β-iminomethyl)naphthoxy]platinum(II) platforms were examined both experimentally and theoretically using newly designed planar chiral Pt analogues (1) having three-dimensional superstructures. A series of optically pure polymethylene-vaulted Pt complexes (R)- and (S)-1 were synthesized and characterized with regard to the chiroptical behaviour of the trans-bis[(β-iminomethyl)naphthoxy]platinum(II) platforms. These complexes were found to exhibit structure-dependent chiroptical characteristics in solution, such that the absolute values of specific rotation, the circular dichroism dissymmetry factor (gabs) and the circularly polarized luminescence dissymmetry factor (glum) all increased upon shortening the polymethylene bridges. Density functional theory and time dependent density functional theory calculations were used to analyse vaulted and non-vaulted complexes, which demonstrated that the present linker-dependent chiroptical properties resulted from constraint-induced changes in the square planar Pt coordination centres rather than from chiral distortion along the coordination platforms.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan.
| | - Shing Cho Ma
- Department of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, USA.
| | - Gilles Muller
- Department of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, USA.
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
3
|
Xu WL, Zhang RX, Wang H, Chen J, Zhou L. Helicoselective Synthesis of Indolohelicenoids through Organocatalytic Central-to-Helical Chirality Conversion. Angew Chem Int Ed Engl 2024; 63:e202318021. [PMID: 38196108 DOI: 10.1002/anie.202318021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
We report the helicoselective and convergent construction of indolohelicenoids with excellent efficiency and stereocontrol. This reaction proceeds through a chiral-phosphoric-acid-catalyzed enantioselective cycloaddition and eliminative aromatization sequence, which can be finely controlled by adjusting the reaction temperature. Mechanistic studies reveal that the chiral phosphoric acid cooperatively serves as both a bifunctional and Brønsted acid catalyst, enabling one-pot central-to-helical chirality conversion. Additionally, the optical properties of the synthesized indolohelicenoids were characterized to explore their potential applications in organic photoelectric materials.
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ru-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
4
|
Dai Y, Zhang Z, Wang D, Li T, Ren Y, Chen J, Feng L. Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310455. [PMID: 37983564 DOI: 10.1002/adma.202310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (glum ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high glum values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the glum value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a glum value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.
Collapse
Affiliation(s)
- Yankai Dai
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zhiwei Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Tianliang Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China
- QianWeichang College, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Gold-Catalyzed 1,2-Aryl Shift and Double Alkyne Benzannulation. Angew Chem Int Ed Engl 2023; 62:e202311123. [PMID: 37823245 DOI: 10.1002/anie.202311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Cei M, Di Bari L, Zinna F. Circularly polarized luminescence of helicenes: A data-informed insight. Chirality 2023; 35:192-210. [PMID: 36707940 DOI: 10.1002/chir.23535] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Helicenes are an interesting scaffold for chiroptical properties and in particular circularly polarized luminescence (CPL). In this short review, we collect the luminescence (glum ) and absorption (gabs ) dissymmetry factors associated to the first Cotton effect of the electronic circular dichroism (ECD) spectrum. Considering the data for 170 [n]-helicenes (n = 4-11), overall we found reasonable correlations between glum and gabs . Despite a few notable exceptions, this would confirm a similarity in the stereochemistry of the ground and emitting excited states for most helicenes. These results may be useful in rationalizing chiroptical data and help chemists in designing new helicene structures with the desired CPL properties.
Collapse
Affiliation(s)
- Matteo Cei
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Liu W, Qin T, Xie W, Yang X. Catalytic Enantioselective Synthesis of Helicenes. Chemistry 2022; 28:e202202369. [PMID: 36063162 DOI: 10.1002/chem.202202369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Helicenes and helicene-like molecules, usually containing multiple ortho-fused aromatic rings, possess unique helical chirality. These compounds have found a wide range of important applications in many research fields, such as asymmetric catalysis, molecular recognition, sensors and responsive switches, circularly polarized luminescence materials and others. However, the catalytic enantioselective synthesis of helicenes was largely underexplored, when compared with the enantioselective synthesis of molecules bearing other stereogenic elements (e.g. central chirality and axial chirality). Since the pioneer work of asymmetric synthesis of helicenes via enantioselective [2+2+2] cycloaddition of triynes by Stará and Starý, last two decades have witnessed the tremendous development in the catalytic enantioselective synthesis of helicenes. In this review, we comprehensively summarized the advances in this field, which include methods enabled by both transition metal catalysis and organocatalysis, and provide our perspective on its future development.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Tianren Qin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
8
|
Koshikawa T, Nogami J, Nagashima Y, Tanaka K. Catalyst-Controlled Inter- and Intramolecular Cascade [4 + 2] Annulations via Benzopyrylium Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Asymmetric Hydroarylation Reactions Catalyzed by Transition Metals: Last 10 Years in a Mini Review. Catalysts 2022. [DOI: 10.3390/catal12101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydroarylation reactions play a pivotal role in organic chemistry due to their versatility and efficiency. In the last 10 years, the scientific production around this reaction has been very high, but in its asymmetric version, the results are less. In this mini review, selected literature examples are considered to draw attention to directions of the asymmetric hydroarylation reaction mediated by transition metal catalysts. The selected works were grouped in two main sections. In the first, we reported examples relating the narrower definition of hydroarylation, namely the metal-catalyzed processes where inactivated aryl moiety undergoes a direct functionalization via insertion of an unsaturated compound. In the second part, hydroarylation reactions take place with the use of pre-activated aryl substrates, usually aryl-iodides or aryl-boronated.
Collapse
|
10
|
Ikeshita M, Furukawa S, Ishikawa T, Matsudaira K, Imai Y, Tsuno T. Enhancement of Chiroptical Responses of trans-Bis[(β-iminomethyl)naphthoxy]platinum(II) Complexes with Distorted Square Planar Coordination Geometry. Chemistry 2022; 11:e202100277. [PMID: 35099127 PMCID: PMC8973265 DOI: 10.1002/open.202100277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Indexed: 12/17/2022]
Abstract
The relationship between the coordination geometry and photophysical properties of trans‐bis[(β‐iminomethyl)naphthoxy]platinum(II) was investigated both experimentally and theoretically. A series of platinum(II) complexes with differently substituted iminomethyl groups were synthesized, and their photophysical properties were examined in solution, in the crystalline, and in the PMMA film‐dispersed state, respectively (PMMA=poly(methyl methacrylate)). These complexes showed structure‐dependent emission spectra, in which the color of the luminescence in the crystalline state varied over a range of about 40 nm depending on the specific bowl‐shaped molecular structure. The chiral complexes with (R,R)‐ and (S,S)‐configurations were found to have structure‐dependent chiroptical properties both in solution and the PMMA film‐dispersed state such that the intensity of circular dichroism (CD) and circularly polarized luminescence (CPL) were enhanced with bulky cyclic substituents at the nitrogen atoms. A theoretical study using density functional theory (DFT) and time‐dependent (TD)‐DFT calculations revealed that the enhancement of chiroptical responses is due to the amplification of the magnetic dipole moment caused by the distortion of the square planar geometry.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 275-8575, Narashino, Chiba, Japan
| | - Sho Furukawa
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 275-8575, Narashino, Chiba, Japan
| | - Takahiro Ishikawa
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 275-8575, Narashino, Chiba, Japan
| | - Kana Matsudaira
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, 577-8502, Higashi, Osaka, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, 577-8502, Higashi, Osaka, Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 275-8575, Narashino, Chiba, Japan
| |
Collapse
|
11
|
Tsurusaki A, Kamikawa K. Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
12
|
Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multiple‐Stereogenic Elements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
13
|
Suárez-Pantiga S, Redero P, Aniban X, Simon M, Golz C, Mata RA, Alcarazo M. In-Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier and Helical Pitch. Chemistry 2021; 27:13358-13366. [PMID: 34288171 PMCID: PMC8519012 DOI: 10.1002/chem.202102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/23/2023]
Abstract
A series of expanded helicenes of different sizes and shapes incorporating phenyl- and biphenyl-substituents at the deepest part of their fjord have been synthesized via sequential Au-catalyzed hydroarylation of appropriately designed diynes, and their racemization barriers have been calculated employing electronic structure methods. These show that the overall profile of the inversions (energies, number of transition states and intermediates, and their relative position) is intensively affected by the interplay of steric and attractive London dispersion interactions. Hence, in-fjord substitution constitutes an additional tool to handle the mechanical properties in helicenes of uncommonly large diameter. The photochemical characterization of the newly prepared helical structures is also reported.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pablo Redero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xaiza Aniban
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multiple-Stereogenic Elements. Angew Chem Int Ed Engl 2021; 60:21486-21493. [PMID: 34235834 DOI: 10.1002/anie.202108040] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Enantioselective construction of molecules bearing multiple stereogenic elements is increasingly related to the synthesis of enantiopure natural products, pharmaceuticals, and functional materials. However, atom-economical and enantioselective approaches to install multiple stereogenic elements in a small molecular template by limited chemical transformation remain challenging. We describe an organocatalytic enantioselective method for the preparation of polychiral molecules bearing four types of stereogenic elements in fused azepines via vinylidene ortho-quinone methide (VQM)-mediated intramolecular electrophilic aromatic substitution. This method was proved robust with a wide range of substrate scope (46-92 % yield), with excellent diastereoselectivity (>20:1 dr) and enantioselectivity achieved (up to 97 % ee). Optical properties and Ru3+ -induced fluorescence responses of these compounds suggest their potential applications in optoelectronic materials and heavy metal ion detection.
Collapse
Affiliation(s)
- Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
15
|
Hanada K, Nogami J, Miyamoto K, Hayase N, Nagashima Y, Tanaka Y, Muranaka A, Uchiyama M, Tanaka K. Rhodium-Catalyzed Enantioselective Synthesis, Structures, and Properties of Single and Double Azahelicene-Like Molecules. Chemistry 2021; 27:9313-9319. [PMID: 33904626 DOI: 10.1002/chem.202005479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 11/11/2022]
Abstract
The enantioselective synthesis of aza[6] and [7]helicene-like molecules have been achieved by the cationic rhodium(I)/axially chiral biaryl bisphosphine complex-catalyzed intramolecular [2+2+2] cycloaddition of cyanodiynes. This protocol was successfully applied to the diastereo- and enantioselective synthesis of an S-shaped double aza[6]helicene-like molecule with a high ee value of 89 %. Although no epimerization and racemization were observed in the double carbo[6]helicene-like molecule at 80 °C, epimerization and racemization of the double aza[6]helicene-like molecule proceeded at 80 °C. This double aza[6]helicene-like molecule showed good fluorescent quantum yields and chiroptical responses under both neutral and acidic conditions.
Collapse
Affiliation(s)
- Kyoichi Hanada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
16
|
Ikai T, Yamakawa S, Suzuki N, Yashima E. One-Step Simultaneous Synthesis of Circularly Polarized Luminescent Multiple Helicenes Using a Chrysene Framework. Chem Asian J 2021; 16:769-774. [PMID: 33449407 DOI: 10.1002/asia.202100035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 11/12/2022]
Abstract
A series of multiple helicenes was simultaneously synthesized in one step by intramolecular cyclization of a single chrysene derivative containing two 2-[(4-alkoxyphenyl)ethynyl]phenyl units accompanied by rearrangements of the aryl pendants. The electrophile-induced double cyclization with or without aryl migrations proceeded efficiently under acidic conditions to afford annulative π-extension of the chrysene units and produced quadruple (QH-2), triple (TH-2), and double (DH-2) helicenes containing [4]- and/or [5]helicene frameworks with dynamic and/or static helicene chirality in one step. Three multiple helicenes' structures were determined by X-ray crystallography and/or density functional theory calculations. The multiple TH-2 and DH-2 helicenes were separated into enantiomers because of the stable one and two [5]helicene moieties, respectively, and showed intense circular dichroism and circularly polarized luminescence. Although QH-2, which comprises four [4]helicene subunits, was not resolved into enantiomers, the TH-2 enantiomers were further separated into a pair of diastereomers at low temperature resulting from their substituted [4]helicene chirality.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shoya Yamakawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
17
|
Ito M, Takaki A, Okamura M, Kanyiva KS, Shibata T. Catalytic Synthesis of Dibenzazepines and Dibenzazocines by 7‐
Exo
‐ and 8‐
Endo
‐
Dig
‐Selective Cycloisomerization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mamoru Ito
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Asahi Takaki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Moeka Okamura
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Kyalo Stephen Kanyiva
- International Center for Science and Engineering Programs (ICSEP) Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
18
|
Affiliation(s)
- Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University,2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry 2020; 27:2920-2934. [DOI: 10.1002/chem.202002791] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
21
|
Hendrich CM, Bongartz LM, Hoffmann MT, Zschieschang U, Borchert JW, Sauter D, Krämer P, Rominger F, Mulks FF, Rudolph M, Dreuw A, Klauk H, Hashmi ASK. Gold Catalysis Meets Materials Science – A New Approach to π‐Extended Indolocarbazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas M. Bongartz
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin T. Hoffmann
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - James W. Borchert
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Désirée Sauter
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department for Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Physical Chemistry Department for Biophysical Chemistry University of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Petra Krämer
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141, Republic of Korea
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
22
|
Hosokawa T, Tsurusaki A, Kamikawa K. Assembly of [5]Helicene Subunits by Palladium-Catalyzed Reactions: Synthesis, Structures, Properties, and Theoretical Study of Multiple Helicenes. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University
| |
Collapse
|
23
|
Wang LH, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene-Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020; 59:17951-17957. [PMID: 32618087 DOI: 10.1002/anie.202006959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Single and double cyclophenylene-ethynylenes (CPEs) with axial and helical chirality have been synthesized by the Sonogashira cross-coupling of di- and tetraethynyl biphenyls with a U-shaped prearomatic diiodoparaphenylene followed by reductive aromatization. X-ray crystallographic analyses and DFT calculations revealed that the CPEs possess highly twisted bent structures. Bend angles on the edge of the paraphenylene units were close to the value of [5]cycloparaphenylene (CPP)-the smallest CPP to date. The double and single CPEs possessed stable chirality despite flexible biphenyl structures because of the high strain in the diethynyl-paraphenylene moiety. In both the single and double CPEs, orbital interactions along the biphenyl axis were observed by DFT calculations in LUMO and LUMO+2 of the single CPE and LUMO+1 of the double CPE, which likely cause lowering of these orbital energies. Concerning chiroptical properties: boosting of the gabs value was observed in the biphenyl-based double CPE, as well as the binaphthyl-based single CPE, compared to the biphenyl-based single CPE.
Collapse
Affiliation(s)
- Li-Hsiang Wang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
24
|
Kawashima T, Matsumoto Y, Sato T, Yamada YMA, Kono C, Tsurusaki A, Kamikawa K. Synthesis, Structure, and Complexation of an S-Shaped Double Azahelicene with Inner-Edge Nitrogen Atoms. Chemistry 2020; 26:13170-13176. [PMID: 32459379 DOI: 10.1002/chem.202002405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/25/2020] [Indexed: 01/12/2023]
Abstract
An S-shaped double azahelicene (1) was synthesized in excellent yield by a palladium-catalyzed double dehydrogenative C-H coupling reaction. The stereochemistry of 1 was confirmed to be dl by single-crystal X-ray diffraction analysis. Selective formation of dl-1 was attributed to the isomerization of the kinetically controlled product (meso-1) into the more thermodynamically stable dl-1 under the applied reaction conditions. dl-1 can coordinate to palladium(II) in a bidentate trans-chelating fashion, which was confirmed by X-ray absorption fine structure (XAFS) as well as by X-ray photoelectron spectroscopy (XPS), diffuse reflectance (DR) UV/Vis, and far-infrared (FIR) absorption spectroscopy. Theoretical calculations of palladium complex 16 revealed a weak attractive interaction between palladium and carbon atoms on the central dimethoxynaphthalene core, which could facilitate a disproportionation between a trans-chelating (dl-1)⋅PdCl2 complex and PdCl2 to form 16.
Collapse
Affiliation(s)
- Takahiro Kawashima
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yuki Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takuma Sato
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Choji Kono
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
25
|
Wang L, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene–Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences Keio University Hiyoshi 4-1-1, Kohoku Yokohama Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
26
|
Labella J, Durán-Sampedro G, Martínez-Díaz MV, Torres T. Annulative π-extension of BODIPYs made easy via gold(i)-catalyzed cycloisomerization. Chem Sci 2020; 11:10778-10785. [PMID: 34094331 PMCID: PMC8162369 DOI: 10.1039/d0sc01054e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Here we report gold(i)-catalyzed cycloisomerization as a new powerful synthetic tool for the preparation of π-extended BODIPY derivatives. The catalytic system PPhF 3AuCl/AgSbF6 enables the synthesis of [b]-[2,1]naphtho-fused-BODIPYs (2a-2c) under mild conditions, in excellent yields and short reaction times. The reaction is totally regioselective to the 6-endo-dig product and for the α-position of the BODIPY, which is both the kinetically and thermodynamically favored pathway, as supported by the free energy profile calculated by means of Density Functional Theory (DFT). Moreover, this methodology also allows the synthesis of two new families of [b]-aryl-fused-BODIPYs, namely, [3,4]phenanthro- (2e and 2f) and [1,2]naphtho-fused (2g) BODIPYs. Their molecular and electronic structures were established by NMR and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. As can be noted from the X-ray structures, 2a, 2e and 2g present interesting structural differences at both the molecular and packing level. Interestingly, despite being isomers, the UV/vis spectra of 2a and 2g revealed significant differences in their electronic structures. The origin of this finding was studied by Time-Dependent DFT calculations. Calculated DFT Nuclear Independent Chemical Shift (NICS(0)) values also supported the different electronic structures of 2a and 2g.
Collapse
Affiliation(s)
- Jorge Labella
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
| | | | - M Victoria Martínez-Díaz
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
- IMDEA-Nanociencia, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
27
|
Yubuta A, Hosokawa T, Gon M, Tanaka K, Chujo Y, Tsurusaki A, Kamikawa K. Enantioselective Synthesis of Triple Helicenes by Cross-Cyclotrimerization of a Helicenyl Aryne and Alkynes via Dynamic Kinetic Resolution. J Am Chem Soc 2020; 142:10025-10033. [DOI: 10.1021/jacs.0c01723] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ayaka Yubuta
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tomoka Hosokawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
28
|
Kinoshita S, Yamano R, Shibata Y, Tanaka Y, Hanada K, Matsumoto T, Miyamoto K, Muranaka A, Uchiyama M, Tanaka K. Rhodium‐Catalyzed Highly Diastereo‐ and Enantioselective Synthesis of a Configurationally Stable S‐Shaped Double Helicene‐Like Molecule. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suzuka Kinoshita
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ryota Yamano
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kyoichi Hanada
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takashi Matsumoto
- Rigaku Corporation 3-9-12 Matsubara-cho Akishima Tokyo 196-8666 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
29
|
Kinoshita S, Yamano R, Shibata Y, Tanaka Y, Hanada K, Matsumoto T, Miyamoto K, Muranaka A, Uchiyama M, Tanaka K. Rhodium-Catalyzed Highly Diastereo- and Enantioselective Synthesis of a Configurationally Stable S-Shaped Double Helicene-Like Molecule. Angew Chem Int Ed Engl 2020; 59:11020-11027. [PMID: 32237104 DOI: 10.1002/anie.202001794] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Indexed: 12/13/2022]
Abstract
An S-shaped double helicene-like molecule (>99 % ee), possessing stable helical chirality, has been synthesized by the rhodium(I)/difluorphos complex-catalyzed highly diastereo- and enantioselective intramolecular double [2+2+2] cycloaddition of a 2-naphthol- and benzene-linked hexayne. The collision between two terminal naphthalene rings destabilizes the helical chirality of the S-shaped double helicene-like molecule, but the introduction of two additional fused benzene rings significantly increases the configurational stability. Thus, no epimerization and racemization were observed even at 100 °C. The enantiopure S-shaped double helicene-like molecule forms a trimer through the multiple C-H⋅⋅⋅π and C-H⋅⋅⋅O interactions in the solid-state. The trimers stack to form columnar packing structures, in which neighboring stacks have opposite dipole directions. The accumulation of helical structures in the same direction in the S-shaped double helicene-like molecule enhanced the chiroptical properties.
Collapse
Affiliation(s)
- Suzuka Kinoshita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ryota Yamano
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyoichi Hanada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Takashi Matsumoto
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
30
|
Schuster NJ, Joyce LA, Paley DW, Ng F, Steigerwald ML, Nuckolls C. The Structural Origins of Intense Circular Dichroism in a Waggling Helicene Nanoribbon. J Am Chem Soc 2020; 142:7066-7074. [DOI: 10.1021/jacs.0c00646] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Leo A. Joyce
- Department of Process Research and Development, Merck and Co., Inc., Rahway, New Jersey 07065, United States
| | | | | | | | | |
Collapse
|
31
|
Fuchibe K, Takao G, Takahashi H, Ijima S, Ichikawa J. Methylarene-Based PAH Synthesis via Domino Cyclization of 1,1-Difluoro-1-alkenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Go Takao
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroki Takahashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shiori Ijima
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
32
|
Duwald R, Bosson J, Pascal S, Grass S, Zinna F, Besnard C, Di Bari L, Jacquemin D, Lacour J. Merging polyacenes and cationic helicenes: from weak to intense chiroptical properties in the far red region. Chem Sci 2019; 11:1165-1169. [PMID: 34084373 PMCID: PMC8145434 DOI: 10.1039/c9sc05407c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 01/05/2023] Open
Abstract
A series of helical tetracenes and pentacenes was synthesized from cationic [6] and [4]helicene precursors. These colorful acenes fluoresce in the far red region. While [4]helicene-based pentacenes exhibit chiroptical properties mainly in the UV region, [6]helicene-derived tetracenes show enhanced ECD in the visible range, in addition to clear CPL responses. This difference is rationalized using first principles.
Collapse
Affiliation(s)
- Romain Duwald
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Johann Bosson
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Simon Pascal
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stéphane Grass
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Francesco Zinna
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Céline Besnard
- Laboratoire de Cristallographie, University of Geneva Quai Ernest Ansermet 24 1211 Geneva 4 Switzerland
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230, Université de Nantes 2 rue de la Houssinière 44322 Nantes France
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
33
|
González‐Granda S, Méndez‐Sánchez D, Lavandera I, Gotor‐Fernández V. Laccase‐mediated Oxidations of Propargylic Alcohols. Application in the Deracemization of 1‐arylprop‐2‐yn‐1‐ols in Combination with Alcohol Dehydrogenases. ChemCatChem 2019. [DOI: 10.1002/cctc.201901543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| | - Daniel Méndez‐Sánchez
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
- Current address: Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | - Iván Lavandera
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| |
Collapse
|
34
|
Urbano A, Del Hoyo AM, Martínez-Carrión A, Carreño MC. Asymmetric Synthesis and Chiroptical Properties of Enantiopure Helical Ferrocenes. Org Lett 2019; 21:4623-4627. [PMID: 31184166 DOI: 10.1021/acs.orglett.9b01522] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An enantiopure helical ferrocene ( Rp)-5 with five ortho-condensed aromatic rings was synthesized using a PtCl2-catalyzed cycloisomerization of planar-chiral 2-ethynyl-1-(4-phenanthrenyl)ferrocene ( Rp)-6f, prepared in 3 steps from known enantiopure sulfinyl ferrocenyl boronic acid ( SS, Sp)-7, as the source of planar chirality. This pentacyclic helical ferrocene showed a very high optical rotation value and strong circular dichroism (CD) signals.
Collapse
Affiliation(s)
- Antonio Urbano
- Departamento de Química Orgánica , Universidad Autónoma de Madrid (UAM) , Cantoblanco , 28049 Madrid , Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM , Cantoblanco , 28049 Madrid , Spain
| | - Ana M Del Hoyo
- Departamento de Química Orgánica , Universidad Autónoma de Madrid (UAM) , Cantoblanco , 28049 Madrid , Spain
| | - Alicia Martínez-Carrión
- Departamento de Química Orgánica , Universidad Autónoma de Madrid (UAM) , Cantoblanco , 28049 Madrid , Spain
| | - M Carmen Carreño
- Departamento de Química Orgánica , Universidad Autónoma de Madrid (UAM) , Cantoblanco , 28049 Madrid , Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM , Cantoblanco , 28049 Madrid , Spain
| |
Collapse
|
35
|
Kimura Y, Shibata Y, Noguchi K, Tanaka K. Enantioselective Synthesis and Epimerization Behavior of a Chiral S‐Shaped [11]Helicene‐Like Molecule Having Collision between Terminal Benzene Rings. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuki Kimura
- Department of Chemical Science and Engineering Tokyo Institute of Technology O‐okayama, Meguro‐ku 152‐8550 Tokyo Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering Tokyo Institute of Technology O‐okayama, Meguro‐ku 152‐8550 Tokyo Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center Tokyo University of Agriculture and Technology Koganei 184‐8588 Tokyo Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O‐okayama, Meguro‐ku 152‐8550 Tokyo Japan
| |
Collapse
|
36
|
Ito M, Inoue D, Takaki A, Kanyiva KS, Shibata T. 8-exo
-dig
-Selective Cycloisomerization for the Synthesis of Dibenzo[b
,e
][1,4]diazocines Using Cationic AuI
Catalysts. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mamoru Ito
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 169-8555 Tokyo Japan
| | - Daisuke Inoue
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 169-8555 Tokyo Japan
| | - Asahi Takaki
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 169-8555 Tokyo Japan
| | - Kyalo Stephen Kanyiva
- Global Center for Science and Engineering; School of Advanced Science and Engineering; Waseda University; Shinjuku 169-8555 Tokyo Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 169-8555 Tokyo Japan
| |
Collapse
|
37
|
Tanaka H, Ikenosako M, Kato Y, Fujiki M, Inoue Y, Mori T. Symmetry-based rational design for boosting chiroptical responses. Commun Chem 2018. [DOI: 10.1038/s42004-018-0035-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|