1
|
Annecke HTP, Eidelpes R, Feyrer H, Ilgen J, Gürdap CO, Dasgupta R, Petzold K. Optimising in-cell NMR acquisition for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024; 78:249-264. [PMID: 39162911 PMCID: PMC11614993 DOI: 10.1007/s10858-024-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Collapse
Affiliation(s)
- Henry T P Annecke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Julian Ilgen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Cenk Onur Gürdap
- Department of Women's and Children's Health, Karolinska Institutet, 171 65, Solna, Sweden
- Science for Life Laboratory, 171 65, Solna, Sweden
| | - Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden.
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
- Science for Life Laboratory, 171 65, Solna, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
2
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
3
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and systematic NMR measurements of sequence-dependent A-T Hoogsteen dynamics uncovers unique conformational specificity in the DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594415. [PMID: 38798635 PMCID: PMC11118333 DOI: 10.1101/2024.05.15.594415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The propensities to form lowly-populated short-lived conformations of DNA could vary with sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging. Using 1H CEST and 13C R 1 ρ NMR, we measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in thirteen trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. The Hoogsteen dynamics had a distinct sequence-dependence compared to duplex stability and minor groove width. Thus, our results uncover a unique source of sequence-specificity hidden within the DNA double helix in the form of A-T Hoogsteen dynamics and establish the utility of 1H CEST to quantitively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
4
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG Syn-Anti Flips in Mutagenic 8OG·A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. J Phys Chem B 2024; 128:4087-4096. [PMID: 38644782 DOI: 10.1021/acs.jpcb.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter their propensities to form low-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn·Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly populated (pop. ∼ 5%) and short-lived (lifetime ∼50 ms) nonmutagenic 8OGanti·Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on the labeled partner adenine. The Watson-Crick-like 8OGsyn·Aanti mismatch also rescued the kinetics of Hoogsteen motions at distant A-T base pairs, which the G·A mismatch had slowed down. The results lend further support for 8OGanti·Aanti as a minor conformational state of 8OG·A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
5
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG syn-anti Flips in Mutagenic 8OG•A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575532. [PMID: 38293035 PMCID: PMC10827055 DOI: 10.1101/2024.01.15.575532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter the propensities to form lowly-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn•Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly-populated (pop. ~ 5%) and short-lived (lifetime ~ 50 ms) non-mutagenic 8OGanti•Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on a labeled partner adenine. The Watson-Crick-like 8OGsyn•Aanti mismatch also rescued the kinetics of Hoogsteen motions at distance A-T base pairs, which the G•A mismatch had slowed down. The results lend further support for 8OGanti•Aanti as a minor conformational state of 8OG•A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Gu S, Szymanski ES, Rangadurai AK, Shi H, Liu B, Manghrani A, Al-Hashimi HM. Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs. Nat Chem Biol 2023; 19:900-910. [PMID: 37095237 DOI: 10.1038/s41589-023-01306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/08/2023] [Indexed: 04/26/2023]
Abstract
Replicative errors contribute to the genetic diversity needed for evolution but in high frequency can lead to genomic instability. Here, we show that DNA dynamics determine the frequency of misincorporating the A•G mismatch, and altered dynamics explain the high frequency of 8-oxoguanine (8OG) A•8OG misincorporation. NMR measurements revealed that Aanti•Ganti (population (pop.) of >91%) transiently forms sparsely populated and short-lived Aanti+•Gsyn (pop. of ~2% and kex = kforward + kreverse of ~137 s-1) and Asyn•Ganti (pop. of ~6% and kex of ~2,200 s-1) Hoogsteen conformations. 8OG redistributed the ensemble, rendering Aanti•8OGsyn the dominant state. A kinetic model in which Aanti+•Gsyn is misincorporated quantitatively predicted the dA•dGTP misincorporation kinetics by human polymerase β, the pH dependence of misincorporation and the impact of the 8OG lesion. Thus, 8OG increases replicative errors relative to G because oxidation of guanine redistributes the ensemble in favor of the mutagenic Aanti•8OGsyn Hoogsteen state, which exists transiently and in low abundance in the A•G mismatch.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Eric S Szymanski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Base4, Durham, NC, USA
| | - Atul K Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Dubini RA, Korytiaková E, Schinkel T, Heinrichs P, Carell T, Rovó P. 1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives. ACS PHYSICAL CHEMISTRY AU 2022; 2:237-246. [PMID: 35637781 PMCID: PMC9137243 DOI: 10.1021/acsphyschemau.1c00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
Collapse
Affiliation(s)
- Romeo
C. A. Dubini
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
| | - Eva Korytiaková
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thea Schinkel
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pia Heinrichs
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
8
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Riad M, Hopkins N, Baronti L, Karlsson H, Schlagnitweit J, Petzold K. Mutate-and-chemical-shift-fingerprint (MCSF) to characterize excited states in RNA using NMR spectroscopy. Nat Protoc 2021; 16:5146-5170. [PMID: 34608336 DOI: 10.1038/s41596-021-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
It is important to understand the dynamics and higher energy structures of RNA, called excited states, to achieve better understanding of RNA function. R1ρ relaxation dispersion NMR spectroscopy (RD) determines chemical shift differences between the most stable, ground state and the short-lived, low-populated excited states. We describe a procedure for deducing the excited state structure from these chemical shift differences using the mutate-and-chemical-shift-fingerprint (MCSF) method, which requires ~2-6 weeks and moderate understanding of NMR and RNA structure. We recently applied the MCSF methodology to elucidate the excited state of microRNA 34a targeting the SIRT1 mRNA and use this example to demonstrate the analysis. The protocol comprises the following steps: (i) determination of the secondary structure of the excited state from RD chemical shift data, (ii) design of trapped excited state RNA, (iii) validation of the excited state structure by NMR, and (iv) MCSF analysis comparing the chemical shifts of the trapped excited state with the RD-derived chemical shift differences. MCSF enables observation of the short-lived RNA structures, which can be functionally and structurally characterized by entrapment.
Collapse
Affiliation(s)
- Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Noah Hopkins
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
10
|
Liu B, Rangadurai A, Shi H, Al-Hashimi H. Rapid assessment of Watson-Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:715-731. [PMID: 37905209 PMCID: PMC10539785 DOI: 10.5194/mr-2-715-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/05/2021] [Indexed: 11/01/2023]
Abstract
In duplex DNA, Watson-Crick A-T and G-C base pairs (bp's) exist in dynamic equilibrium with an alternative Hoogsteen conformation, which is low in abundance and short-lived. Measuring how the Hoogsteen dynamics varies across different DNA sequences, structural contexts and physiological conditions is key for identifying potential Hoogsteen hot spots and for understanding the potential roles of Hoogsteen base pairs in DNA recognition and repair. However, such studies are hampered by the need to prepare 13 C or 15 N isotopically enriched DNA samples for NMR relaxation dispersion (RD) experiments. Here, using SELective Optimized Proton Experiments (SELOPE) 1 H CEST experiments employing high-power radiofrequency fields (B 1 > 250 Hz) targeting imino protons, we demonstrate accurate and robust characterization of Watson-Crick to Hoogsteen exchange, without the need for isotopic enrichment of the DNA. For 13 residues in three DNA duplexes under different temperature and pH conditions, the exchange parameters deduced from high-power imino 1 H CEST were in very good agreement with counterparts measured using off-resonance 13 C / 15 N spin relaxation in the rotating frame (R 1 ρ ). It is shown that 1 H-1 H NOE effects which typically introduce artifacts in 1 H-based measurements of chemical exchange can be effectively suppressed by selective excitation, provided that the relaxation delay is short (≤ 100 ms). The 1 H CEST experiment can be performed with ∼ 10× higher throughput and ∼ 100× lower cost relative to 13 C / 15 N R 1 ρ and enabled Hoogsteen chemical exchange measurements undetectable by R 1 ρ . The results reveal an increased propensity to form Hoogsteen bp's near terminal ends and a diminished propensity within A-tract motifs. The 1 H CEST experiment provides a basis for rapidly screening Hoogsteen breathing in duplex DNA, enabling identification of unusual motifs for more in-depth characterization.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Karlsson H, Feyrer H, Baronti L, Petzold K. Production of Structured RNA Fragments by In Vitro Transcription and HPLC Purification. Curr Protoc 2021; 1:e159. [PMID: 34138527 DOI: 10.1002/cpz1.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The understanding of the functional importance of RNA has increased enormously in the last decades. This has required research on the RNA molecules themselves, with the concomitant need for obtaining purified RNA samples, such as for structural studies by NMR or other methods. The main method to create labeled and unlabeled RNA, T7 in vitro transcription, suffers from sequence-dependent yield and often low homogeneity for short constructs (<100 nt) and requires laborious purification. Additionally, the design of structured RNA fragments mimicking the structure of a larger biological RNA is often not straightforward. Secondary structure simulations can be used to make reliable predictions about the folding of a particular RNA fragment. In this article, we describe how to design an RNA construct of interest from a larger sequence, and we combine several previously published improvements of the in vitro transcription method, such as the use of 2'-methoxy modifications and dimethyl sulfoxide or the use of tandem repeats, to increase yield and purity of in vitro-transcribed RNA. Together with a high-performance liquid chromatography (HPLC) purification procedure using both reversed-phase ion-pairing and ion-exchange HPLC, we provide a robust protocol to obtain highly pure RNA of short to intermediate length in large quantities. The protocol optimizes yield, especially for RNA starting with nucleotides other than G. At the same time, it is simplified, and the required time is reduced. The protocols described here constitute a versatile pipeline for the production of purified RNA samples and are suitable for users with little experience in liquid chromatography. © 2021 The Authors. Basic Protocol 1: RNA construct design Basic Protocol 2: DNA template production and in vitro transcription Alternate Protocol: Tandem transcription and RNase H cleavage Basic Protocol 3: Reversed-phase ion-pairing HPLC purification Basic Protocol 4: Ion-exchange HPLC purification.
Collapse
Affiliation(s)
- Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Current address: Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Liu B, Shi H, Al-Hashimi HM. Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Curr Opin Struct Biol 2021; 70:16-25. [PMID: 33836446 DOI: 10.1016/j.sbi.2021.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Nucleic acids do not fold into a single conformation, and dynamic ensembles are needed to describe their propensities to cycle between different conformations when performing cellular functions. We review recent advances in solution-state nuclear magnetic resonance (NMR) methods and their integration with computational techniques that are improving the ability to probe the dynamic ensembles of DNA and RNA. These include computational approaches for predicting chemical shifts from structure and generating conformational libraries from sequence, measurements of exact nuclear Overhauser effects, development of new probes to study chemical exchange using relaxation dispersion, faster and more sensitive real-time NMR techniques, and new NMR approaches to tackle large nucleic acid assemblies. We discuss how these advances are leading to new mechanistic insights into gene expression and regulation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states. Nat Commun 2021; 12:1595. [PMID: 33707433 PMCID: PMC7952389 DOI: 10.1038/s41467-021-21840-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
NH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental chemical shifts of the central base pair, and can be used to predict imino chemical shifts of RNAs to remarkable accuracy. Strikingly, the semiempirical method can well interpret the variations of chemical shifts for different base pair triplets, and is even applicable to non-canonical motifs. This finding opens an avenue for predicting chemical shifts of more complicated RNA motifs. Furthermore, we combine the imino chemical shift prediction with NMR relaxation dispersion experiments targeting both 15N and 1HN of the imino group, and verify a previously characterized excited state of P5abc subdomain including an earlier speculated non-native G•G mismatch. Prediction of chemical shifts is critical for extracting structural and dynamic information from biomolecular NMR data. Here the authors report an RNA imino group chemical shift predictor, showing that the imino chemical shifts of a residue are dictated by the surrounding base pair triplet.
Collapse
|
14
|
Furukawa A, Walinda E, Arita K, Sugase K. Structural dynamics of double-stranded DNA with epigenome modification. Nucleic Acids Res 2021; 49:1152-1162. [PMID: 33337470 PMCID: PMC7826269 DOI: 10.1093/nar/gkaa1210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Modification of cytosine plays an important role in epigenetic regulation of gene expression and genome stability. Cytosine is converted to 5-methylcytosine (5mC) by DNA methyltransferase; in turn, 5mC may be oxidized to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation enzyme. The structural flexibility of DNA is known to affect the binding of proteins to methylated DNA. Here, we have carried out a semi-quantitative analysis of the dynamics of double-stranded DNA (dsDNA) containing various epigenetic modifications by combining data from imino 1H exchange and imino 1H R1ρ relaxation dispersion NMR experiments in a complementary way. Using this approach, we characterized the base-opening (kopen) and base-closing (kclose) rates, facilitating a comparison of the base-opening and -closing process of dsDNA containing cytosine in different states of epigenetic modification. A particularly striking result is the increase in the kopen rate of hemi-methylated dsDNA 5mC/C relative to unmodified or fully methylated dsDNA, indicating that the Watson-Crick base pairs undergo selective destabilization in 5mC/C. Collectively, our findings imply that the epigenetic modulation of cytosine dynamics in dsDNA mediates destabilization of the GC Watson-Crick base pair to allow base-flipping in living cells.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Dubini RCA, Schön A, Müller M, Carell T, Rovó P. Impact of 5-formylcytosine on the melting kinetics of DNA by 1H NMR chemical exchange. Nucleic Acids Res 2020; 48:8796-8807. [PMID: 32652019 PMCID: PMC7470965 DOI: 10.1093/nar/gkaa589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure-as witnessed from the ∼2°C decrease in the melting temperature and 5-10 kJ mol-1 decrease in ΔG°-and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van't Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.
Collapse
Affiliation(s)
- Romeo C A Dubini
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| | - Alexander Schön
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Markus Müller
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| |
Collapse
|
16
|
Karlsson H, Baronti L, Petzold K. A robust and versatile method for production and purification of large-scale RNA samples for structural biology. RNA (NEW YORK, N.Y.) 2020; 26:1023-1037. [PMID: 32354720 PMCID: PMC7373988 DOI: 10.1261/rna.075697.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/16/2023]
Abstract
Recent findings in genome-wide transcriptomics revealed that RNAs are involved in almost every biological process, across all domains of life. The characterization of native RNAs of unknown function and structure is particularly challenging due to their typical low abundance in the cell and the inherent sensitivity toward ubiquitous RNA degrading enzymes. Therefore, robust in vitro synthesis and extensive work-up methods are often needed to obtain samples amenable for biochemical, biophysical, and structural studies. Here, we present a protocol that combines the most recent advances in T7 in vitro transcription methodology with reverse phase ion pairing and ion exchange HPLC purification of RNAs for the production of yield-optimized large-scale samples. The method is easy to follow, robust and suitable for users with little or no experience within the field of biochemistry or chromatography. The complete execution of this method, for example, for production of isotopically labeled NMR samples, can be performed in less than a week.
Collapse
Affiliation(s)
- Hampus Karlsson
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-104 35 Stockholm, Sweden
| |
Collapse
|
17
|
Base-pair conformational switch modulates miR-34a targeting of Sirt1 mRNA. Nature 2020; 583:139-144. [PMID: 32461691 DOI: 10.1038/s41586-020-2336-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/12/2020] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the 'seed' region of the miRNA and its counterpart mRNA1. Here we use R1ρ relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switch-based on the rearrangement of a single base pair in the miRNA-mRNA duplex-that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA-mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial 'screening' state to an 'active' state, and unveil the role of the RNA duplex beyond the seed in Ago2.
Collapse
|
18
|
Kim DN, Thiel BC, Mrozowich T, Hennelly SP, Hofacker IL, Patel TR, Sanbonmatsu KY. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat Commun 2020; 11:148. [PMID: 31919376 PMCID: PMC6952434 DOI: 10.1038/s41467-019-13942-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.
Collapse
Affiliation(s)
- Doo Nam Kim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Bernhard C Thiel
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Tyler Mrozowich
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
- New Mexico Consortium, Los Alamos, New Mexico, USA.
| |
Collapse
|
19
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
20
|
Rangadurai A, Szymaski ES, Kimsey IJ, Shi H, Al-Hashimi HM. Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R 1ρ relaxation dispersion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:55-102. [PMID: 31481159 PMCID: PMC6727989 DOI: 10.1016/j.pnmrs.2019.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/10/2023]
Abstract
This review describes off-resonance R1ρ relaxation dispersion NMR methods for characterizing microsecond-to-millisecond chemical exchange in uniformly 13C/15N labeled nucleic acids in solution. The review opens with a historical account of key developments that formed the basis for modern R1ρ techniques used to study chemical exchange in biomolecules. A vector model is then used to describe the R1ρ relaxation dispersion experiment, and how the exchange contribution to relaxation varies with the amplitude and frequency offset of an applied spin-locking field, as well as the population, exchange rate, and differences in chemical shifts of two exchanging species. Mathematical treatment of chemical exchange based on the Bloch-McConnell equations is then presented and used to examine relaxation dispersion profiles for more complex exchange scenarios including three-state exchange. Pulse sequences that employ selective Hartmann-Hahn cross-polarization transfers to excite individual 13C or 15N spins are then described for measuring off-resonance R1ρ(13C) and R1ρ(15N) in uniformly 13C/15N labeled DNA and RNA samples prepared using commercially available 13C/15N labeled nucleotide triphosphates. Approaches for analyzing R1ρ data measured at a single static magnetic field to extract a full set of exchange parameters are then presented that rely on numerical integration of the Bloch-McConnell equations or the use of algebraic expressions. Methods for determining structures of nucleic acid excited states are then reviewed that rely on mutations and chemical modifications to bias conformational equilibria, as well as structure-based approaches to calculate chemical shifts. Applications of the methodology to the study of DNA and RNA conformational dynamics are reviewed and the biological significance of the exchange processes is briefly discussed.
Collapse
Affiliation(s)
- Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eric S Szymaski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Nymirum, 4324 S. Alston Avenue, Durham, NC 27713, USA(1)
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Department of Chemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Schlagnitweit J, Steiner E, Karlsson H, Petzold K. Efficient Detection of Structure and Dynamics in Unlabeled RNAs: The SELOPE Approach. Chemistry 2018; 24:6067-6070. [PMID: 29504639 PMCID: PMC5947647 DOI: 10.1002/chem.201800992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/10/2023]
Abstract
The knowledge of structure and dynamics is crucial to explain the function of RNAs. While nuclear magnetic resonance (NMR) is well suited to probe these for complex biomolecules, it requires expensive, isotopically labeled samples, and long measurement times. Here we present SELOPE, a new robust, proton-only NMR method that allows us to obtain site-specific overview of structure and dynamics in an entire RNA molecule using an unlabeled sample. SELOPE simplifies assignment and allows for cost-effective screening of the response of nucleic acids to physiological changes (e.g. ion concentration) or screening of drugs in a high throughput fashion. This single technique allows us to probe an unprecedented range of exchange time scales (the whole μs to ms motion range) with increased sensitivity, surpassing all current experiments to detect chemical exchange. For the first time we could describe an RNA excited state using an unlabeled RNA.
Collapse
Affiliation(s)
- Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Emilie Steiner
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Hampus Karlsson
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| |
Collapse
|