1
|
Zeng T, Li Y, Wang R, Zhu J. Temperature-Dependent Divergent Cyclopentadiene Synthesis through Cobalt-Catalyzed C-C Activation of Cyclopropenes. Org Lett 2024. [PMID: 38621189 DOI: 10.1021/acs.orglett.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We report a temperature-dependent divergent approach to synthesize multisubstituted cyclopentadienes through cobalt-catalyzed carbon-carbon (C-C) bond activation of cyclopropenes and ring expansion with internal alkynes. By employing different heating procedures, two cyclopentadiene substitution isomers were efficiently and selectively constructed. This reaction does not require preactivation of the metal catalyst or additional reducing reagents. Preliminary mechanistic investigations suggest that the key steps are oxidative addition of the cyclopropene to cobalt catalyst, followed by alkyne insertion and 1,5-ester shift.
Collapse
Affiliation(s)
- Tianlong Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ruobin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Vollgraff T, Doppiu A, Sundermeyer J. Dihydroguaiazulenide Complexes and Catalysts of Group 8-12 Transition Metals: Ligands from Renewable Feedstock Replace, even Outmatch Petrochemical Based Cyclopentadienyl Chemistry. Chemistry 2024; 30:e202302994. [PMID: 37955549 DOI: 10.1002/chem.202302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
We present an in-depth study of the sterically demanding Cp-synthon (8-H-GuaH)Li isolated from natural product guaiazulene (Gua) as a ligand transfer reagent towards late transition metal complex precursors. The synthesis and full characterization of selected, essentially unexplored homo- and heteroleptic 8-H-guaiazulenide complexes of iron, ruthenium, cobalt, rhodium, platinum, copper and zinc are discussed in detail. In order to demonstrate their potential in catalytic applications, [(GuaH)PtMe3 ] was selected. The latter proved an even higher catalytic activity in light induced olefin hydrosilylation at catalyst loads as low as 5 ppm than classical [CpPtMe3 ] in a typical test reaction of silicone elastomer fabrication. Our results demonstrate that traditional petrochemical based Cp metal chemistry and catalysis can be replaced, sometimes even outmatched by superior catalysts based on cheap building blocks from renewable feedstock.
Collapse
Affiliation(s)
- Tobias Vollgraff
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Angelino Doppiu
- Umicore AG&Co. KG, PMC R&D, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
3
|
Yan X, Jiang J, Wang J. A Class of Readily Tunable Planar-Chiral Cyclopentadienyl Rhodium(III) Catalysts for Asymmetric C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202201522. [PMID: 35302699 DOI: 10.1002/anie.202201522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Chiral half-sandwich cyclopentadienyl rhodium(III) (CpRhIII ) complexes are powerful catalysts for promoting asymmetric C-H activation reactions. Their preparation normally involved linking or embedding the Cp motif to or into a certain chiral backbone to forge the so-called chiral Cp ligand. However, preparation of a planar-chiral CpRhIII catalyst bearing a non-chiral Cp ligand remains a formidable challenge and is rarely reported. We describe herein an unusual class of planar-chiral rhodium catalysts bearing non-chiral Cp ligands. Different from existing ones, this catalyst is readily tunable. Ten planar-chiral only CpRhIII catalysts were prepared with ease, and successfully used in two enantioselective C-H activation reactions. Given its convenient synthesis and high structural tunability, these catalysts are expected to find more utilities in asymmetric C-H activation.
Collapse
Affiliation(s)
- Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Yan X, Jiang J, Wang J. A Class of Readily Tunable Planar‐Chiral Cyclopentadienyl Rhodium(III) Catalyst for Asymmetric C‐H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jijun Jiang
- Sun Yat-Sen University School of Chemistry CHINA
| | - Jun Wang
- Sun Yat-Sen University School of Chemistry Xinggang West Road 135 510275 Guangzhou CHINA
| |
Collapse
|
5
|
Su H, Chu T. Synthesis and Bioevaluation of the Cyclopentadienyl Tricarbonyl Technetium-99m 2-Nitroimidazole Derivatives for Tumor Hypoxia Imaging. Bioorg Med Chem Lett 2022; 60:128583. [PMID: 35085720 DOI: 10.1016/j.bmcl.2022.128583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia imaging agents can play an important role in the tumor treatment by avoiding the worse effect of radiotherapy and chemotherapy due to the tumor hypoxia. Due to the small size and easy coordination, tricarbonyl technetium-99m can be used to label a wide range of imaging agents. In this work, the tricarbonyl 99mTc labeled small-sized hypoxia imaging agents containing 2-nitroimidazoles were prepared, which have different carbon chain lengths between cyclopentadienyl and 2-nitroimidazole, and which have one or two 2-nitroimidazole groups. The results of S180 cell experiment and biodistribution indicated that these molecules have different hypoxic selectivity. When contains one 2-nitroimidazole, as the carbon chain lengthens, which means the molecular volume becomes larger, hypoxia cellular uptake and selectivity decrease in S180 cell uptake experiment. In biodistribution study in mice bearing S180 tumor, Tc-2 (1-cyclopentadienyl-5-(2-nitro-1H-imidazol-1-yl)-pentan-1-one tricarbonyl 99mTc complex), which has intermediate carbon chain, is better due to the more complex factors. Its tumor/blood (T/B) ratio is 3.56±0.25, tumor/muscle(T/M) ratio is 1.73±0.29 and tumor uptake is 2.23±0.24 %ID/g at 2 h. Comparing to other tricarbonyl technetium complexes containing one 2-nitroimidazole, the complexes in this work have an advantage in tumor/blood ratio and tumor uptake. This suggests that the small-volume cyclopentadienyl may have an advantage when used as a ligand. When contains two 2-nitroimidazole groups, the complex, 1-cyclopentadienyl-5-di(2-(2-nitro-1H-imidazol-1-yl)ethyl)amino-pentan-1-one tricarbonyl 99mTc complex (Tc-4), has the better results in the cell experiment than those which contain one 2-nitroimidazole group. Thus the hypoxia imaging agent contains two 2-nitroimidazole groups is more advantageous, but further modifications of Tc-4 are needed to improve its clearance rate in the blood, because the increased lipophilicity leads to a decrease in the T/B ratio of Tc-4. In conclusion, small volume hypoxia imaging agents with two 2-nitroimidazole groups may be the trend of development.
Collapse
Affiliation(s)
- Hang Su
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Taiwei Chu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Biological evaluation of complexes of cyclopentadienyl M(CO) 3+ (M = Re, 99mTc) with high blood-brain barrier penetration potential as brain cancer agents. Invest New Drugs 2022; 40:497-505. [PMID: 35024984 DOI: 10.1007/s10637-022-01211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
To address the major medical need for effective chemotherapeutics/diagnostics for brain cancer, in this work three cyclopentadienyl M(CO)3+ (M = Re, 99mTc) complexes, which cross the blood-brain barrier (BBB) in high % and are designed to mimic the anticancer agent 2-phenylbenzothiazole, are in vitro and in vivo evaluated for anticancer action. The study includes cytotoxicity and uptake studies in cancer and healthy neuronal cell lines, mechanistic investigation of potential anticancer pathways, and biodistribution studies in mice bearing glioblastoma xenografts. The stable Re complexes exhibit selective uptake and significant antiproliferative effect, particularly against U-251 MG glioblastoma cells, with no significant toxicity in healthy neurons, demonstrating the suitability of this type of complexes to serve as selective therapeutic/imaging agents for brain cancer. Furthermore, they result in the generation of elevated Reactive Oxygen Species (ROS) levels, and lead to significant G2/M arrest followed by apoptosis. Biodistribution studies in U-251 MG xenograft bearing mice with the radioactive 99mTc complex that exhibits the highest BBB penetration, show retention at the tumor-site offering a diagnostic prospect and, in addition, indicating the capability of the Re analogue to accumulate at the tumor site for therapeutic action. Overall, the complexes demonstrate significant anticancer properties that, combined with their high BBB penetration potential, render them strong candidates for further evaluation as brain cancer agents.
Collapse
|
7
|
Roca Jungfer M, Ernst MJ, Hagenbach A, Abram U. [{Tc
I
(NO)(L
OMe
)(PPh
3
)Cl}
2
Ag](PF
6
) and [Tc
II
(NO)(L
OMe
)(PPh
3
)Cl](PF
6
): Two Unusual Technetium Complexes with a “Kläui‐type” Ligand. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Moritz Johannes Ernst
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
8
|
Lengacher R, Ott S, Blacque O, Braband H, Alberto R. A Multi-Functional Tool - Cyclopentadienyl Re and 99mTc Complex Synthesis on Highly Functionalised Arenes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lengacher R, Wang Y, Braband H, Blacque O, Gasser G, Alberto R. Organometallic small molecule kinase inhibitors - direct incorporation of Re and 99mTc into Opaganib®. Chem Commun (Camb) 2021; 57:13349-13352. [PMID: 34817478 PMCID: PMC8658909 DOI: 10.1039/d1cc03678e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[(η5-Cp)ReI(CO)3] was incorporated into the kinase inhibitor Opaganib®. The resulting bioorganometallic complex showed a similar anti-cancer activity to Opaganib® against PC-3 cancer cells. The IC50 value for the kinase SK2 is 30x higher than that of Opaganib®. The 99mTc homologue was synthesized, completing a matched-pair for molecular theranostics. Replacing an adamantyl unit in the protein kinase inhibitor Opaganib® with an integrated [(η5-Cp)M(CO)3] (M = Re, 99mTc) unit retains the lead's bioactivity and yields a true matched-pair pharmacomimetic.![]()
Collapse
Affiliation(s)
| | - Youchao Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Paris F-75005, France
| | - Henrik Braband
- University of Zurich, Department of Chemistry, Zurich, Switzerland.
| | - Olivier Blacque
- University of Zurich, Department of Chemistry, Zurich, Switzerland.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Paris F-75005, France
| | - Roger Alberto
- University of Zurich, Department of Chemistry, Zurich, Switzerland.
| |
Collapse
|
10
|
Roca Jungfer M, Abram U. [Tc(OH 2)(CO) 3(PPh 3) 2] +: A Synthon for Tc(I) Complexes and Its Reactions with Neutral Ligands. Inorg Chem 2021; 60:16734-16753. [PMID: 34657434 DOI: 10.1021/acs.inorgchem.1c02599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A scalable synthesis of the novel and highly reactive [Tc(OH2)(CO)3(PPh3)2]+ cation is described. The ligand-exchange chemistry of this compound with neutral ligands coordinating through C, N, O, S, Se, and Te has been explored systematically. The complexes either retain the original mer-trans tricarbonyl core under exclusive exchange of the aqua ligand or form dicarbonyl complexes by thermal decarbonylation. Ligand exchange reactions starting from [Tc(OH2)(CO)3(PPh3)2]+ proceed under mild conditions and are generally almost quantitative. Some of the formed complexes are remarkably stable and inert, while others provide products with one labile ligand for further reactions. The derived complexes of the type [Tc(L)(CO)3(PPh3)2]+ and [Tc(L)2(CO)2(PPh3)2]+ represent an interesting opportunity for the development of 99mTc complexes with potential use in radiopharmacy. The ready displacement of the aqua ligand highlights the synthetic value of [Tc(OH2)(CO)3(PPh3)2]+ as a reactive entry point for further studies in the little explored field of the organometallic chemistry of technetium.
Collapse
Affiliation(s)
- Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, D-14195 Berlin, Germany
| |
Collapse
|
11
|
Lee BYT, Phillips AD, Hanif M, Tong KKH, Söhnel T, Hartinger CG. Heptadentate, Octadentate, Or Even Nonadentate? Denticity in the Unexpected Formation of an All-Carbon Donor-Atom Ligand in Rh III(Cp*)(Anthracenyl-NHC) Complexes. Inorg Chem 2021; 60:8734-8741. [PMID: 34100283 DOI: 10.1021/acs.inorgchem.1c00711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Investigations on incorporating an N-flanking anthracenyl moiety to [Rh(Cp*)(NHC)Cl2] complexes surprisingly led to the formation of an intramolecular C-C bond between the Cp* and anthracenyl moieties, with additional auxiliary interactions between the metal and the anthracenyl ring system. In silico modeling supports a reaction mechanism whereby Rh(η4-tetramethylfulvene) intermediates undergo metallocycloaddition and the abstraction of a chlorido ligand, affording unique cationic complexes that feature Rh centers coordinated by a nonadentate ligand with exclusively carbon donor atoms. Some Rh-C interactions were extremely weak but nevertheless exhibited covalent bonding character. These weak Rh-C interactions were readily displaced by stronger electron donors, and the nonadentate ligand reverted to the heptadentate coordination mode observed in the intermediate. As far as we are aware, this study provides the first conclusive evidence of complexes bearing a single nonadentate κ9-coordinating ligand that features only carbon donors bound to a metal center.
Collapse
Affiliation(s)
- Betty Y T Lee
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew D Phillips
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Lengacher R, Alberto R. Bioorganometallics: 99mTc cytectrenes, syntheses and applications in nuclear medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lengacher R, Braband H, Csucker J, Alberto R. Convenient Cyclopentadiene Modifications for Building Versatile (Radio‐)Metal Cyclopentadienyl Frameworks. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Henrik Braband
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Joshua Csucker
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Roger Alberto
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
14
|
Li B, Hildebrandt S, Hagenbach A, Abram U. Tricarbonylrhenium(I) and ‐technetium(I) Complexes with Tris(1,2,3‐triazolyl)phosphine Oxides. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Li
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sarah Hildebrandt
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
15
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Alberto R. The "Carbonyl Story" and Beyond; Experiences, Lessons and Implications. Chembiochem 2020; 21:2743-2749. [PMID: 32875690 DOI: 10.1002/cbic.202000387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Indexed: 12/15/2022]
Abstract
The complex [99m Tc(OH2 )3 (CO)3 ]+ has become a versatile building block in radiopharmaceutical chemistry, applied by many groups worldwide. However, despite widespread efforts, only one compound has made it right the way through clinical trials. Along the way from its discovery to its development into an eventual product, the author experienced issues that he would handle differently in retrospect. In this article, these experiences are turned into "lessons" that might be helpful for young researchers finding themselves in similar situations. Beside issues with patenting and company strategies, the carbonyl story has provided scientific implications beyond its own story, and insights from which any future 99m Tc-based chemistry for radiopharmacy or molecular imaging might benefit.
Collapse
Affiliation(s)
- Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
17
|
Lengacher R, Csucker J, Hernández-Valdés D, Spingler B, Braband H, Alberto R. Expanding the Cyclopentadienyl Framework: 99mTc/Re Complexes with Orthogonal Functions for Bioconjugation. Bioconjug Chem 2020; 32:1393-1398. [PMID: 32997491 DOI: 10.1021/acs.bioconjchem.0c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of bifunctional cyclopentadienes of the type 1,3-EtOCO-HCp-linker-NH2 were synthesized. In this series, the linker length (distance between the amine functionalities and the cyclopentadiene) has been systematically varied (CH2)n (n = 1-3). The corresponding Re complexes [(η5-C5H3RR')Re(CO)3] (R = -COOEt, R' = -linker-NH2) were synthesized and structurally characterized. They exhibit extraordinary stability toward water and air. All bifunctional cyclopentadienes have been labeled with the [99mTc(CO)3]+ moiety. Whereas the reactions with ethylene and propylene linked cyclopentadiene under mild reaction conditions led to the products in high radiochemical purity (>96%) without applying further purification protocols, harsher reaction conditions were required for the synthesis of the methylene-linked cyclopentadiene compound. Masking the amine in the methylene-linked cyclopentadiene by an amide bond bypasses this problem. The very hydrophilic characters of these complexes were assessed by KOW analysis. The reported cyclopentadienes and their complexes offer a robust and versatile platform for (radio)metal incorporation into biologically active lead structures.
Collapse
Affiliation(s)
- Raphael Lengacher
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Joshua Csucker
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Daniel Hernández-Valdés
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Bernhard Spingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Henrik Braband
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Roger Alberto
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Grunwald AC, Scholtysik C, Hagenbach A, Abram U. One Ligand, One Metal, Seven Oxidation States: Stable Technetium Complexes with the “Kläui Ligand”. Inorg Chem 2020; 59:9396-9405. [DOI: 10.1021/acs.inorgchem.0c01264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna C. Grunwald
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Clemens Scholtysik
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Adelheid Hagenbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| |
Collapse
|
19
|
Borràs J, Mesa V, Suades J, Barnadas-Rodríguez R. Direct Synthesis of Rhenium and Technetium-99m Metallosurfactants by a Transmetallation Reaction of Lipophilic Groups: Potential Applications in the Radiolabeling of Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1993-2002. [PMID: 31995988 DOI: 10.1021/acs.langmuir.9b03231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new zinc dithiocarbamate functionalized with palmitoyl groups is described as a useful tool for the preparation of metallosurfactants through a transmetallation reaction with the transition metals rhenium and technetium. An amphiphilic rhenium complex is synthesized by a transmetallation reaction with the zinc complex in presence of the polar phosphine sodium triphenylphosphine trisulfonate, which leads to a rhenium complex with a lipophilic dithiocarbamate and a polar phosphine ligand. The study of this rhenium complex has shown that it self-aggregates, leading to the formation of aggregates that have been analyzed by dynamic light scattering and cryotransmission electron microscopy (cryo-TEM). In addition, this amphiphilic rhenium complex is incorporated into soy phosphatidylcholine liposomes, whether liposomes are prepared by mixing phospholipid and the rhenium complex or by the incorporation of the rhenium complex into preformed liposomes. The one-pot reaction of the radiocompound [99mTc(H2O)3(CO)3]+ with the above-mentioned zinc dithiocarbamate, the phosphine sodium triphenylphosphine trisulfonate and the phospholipid soy phosphatidylcholine, leads to liposomes labeled with a Tc-99m homologous complex of the rhenium complex, in accordance with the high-performance liquid chromatography (HPLC) data.
Collapse
Affiliation(s)
- Jordi Borràs
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Verónica Mesa
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Joan Suades
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ramon Barnadas-Rodríguez
- Unitat de Biofı́sica/Centre d'Estudis en Biofı́sica, Departament de Bioquı́mica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
20
|
Frei A, Fischer E, Childs BC, Holland JP, Alberto R. Two is better than one: difunctional high-affinity PSMA probes based on a [CpM(CO) 3] (M = Re/ 99mTc) scaffold. Dalton Trans 2020; 48:14600-14605. [PMID: 31549121 DOI: 10.1039/c9dt02506e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
More than 10% of all men will be given the diagnosis "prostate cancer" during their lifetime. Most of the current radio-diagnostic vehicles involve both expensive and localized production with cyclotrons as well as the use of bulky chelators for the radiometal. We report the use of a new multifunctional cyclopentadiene (Cp) platform to prepare difunctional and monofunctional, PSMA-targeting rhenium and technetium-99m complexes. The Cp-complexes and the free ligands are prepared by straightforward functionalization with either one or two Lys-urea-Glu (LuG) PSMA binding motifs. Cell binding assays revealed that the difunctional rhenium complex displays a dissociation constant (KD = 2.1 nM) that is an order of magnitude lower than the monofunctional compound (KD = 24.2 nM). The 99mTc complexes can be prepared in one step and ≤15 min in high yields. These difunctional Cp-Re(i)/99mTc(i) complexes represent a new class of imaging agents with binding affinities comparable to clinically evaluated compounds. Additionally, this study demonstrates that the Cp-platform can readily be derivatized with amine-containing biomolecules. Extending this work to incorporate both targeting and therapeutic moieties could lead to theranostic systems with Re/99mTc.
Collapse
Affiliation(s)
- Angelo Frei
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Ackermann J, Abdulkader A, Scholtysik C, Jungfer MR, Hagenbach A, Abram U. [TcI(NO)X(Cp)(PPh3)] Complexes (X– = I–, I3–, SCN–, CF3SO3–, or CF3COO–) and Their Reactions. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Janine Ackermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| | - Abdullah Abdulkader
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| | - Clemens Scholtysik
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| | - Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, D-14195 Berlin, Germany
| |
Collapse
|
22
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
23
|
Abstract
Abstract
The bio-relevant metals (and derived compounds) of the Periodic Table of the Elements (PTE) are in the focus. The bulk elements sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) from the s-block, which are essential for all kingdoms of life, and some of their bio-activities are discussed. The trace elements of the d-block of the PTE as far as they are essential for humans (Mn, Fe, Co, Cu, Zn, Mo) are emphasized, but V, Ni, Cd, and W, which are essential only for some forms of life, are also considered. Chromium is no longer classified as being essential. From the p-block metals only the metalloid (half-metal) selenium (Se) is essential for all forms of life. Two other metalloids, silicon and arsenic, are briefly mentioned, but they have not been proven as being essential for humans. All metals of the PTE and a plethora of their compounds are used in industry and many of them are highly toxic, like lead (Pb), which is discussed as a prime example. Several metals of the PTE, that is, their ions and complexes, are employed in medicine and we discuss the role of lithium, gallium, strontium, technetium, silver, gadolinium (the only f-block element), platinum, and gold.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51 , CH-4056 Basel , Switzerland
| |
Collapse
|
24
|
Frei A. Synthetic Routes towards Multifunctional Cyclopentadienes. Chemistry 2019; 25:7074-7090. [DOI: 10.1002/chem.201900276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Angelo Frei
- Institute for Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
25
|
Sagnou M, Mavroidi B, Shegani A, Paravatou-Petsotas M, Raptopoulou C, Psycharis V, Pirmettis I, Papadopoulos MS, Pelecanou M. Remarkable Brain Penetration of Cyclopentadienyl M(CO)3+ (M = 99mTc, Re) Derivatives of Benzothiazole and Benzimidazole Paves the Way for Their Application as Diagnostic, with Single-Photon-Emission Computed Tomography (SPECT), and Therapeutic Agents for Alzheimer’s Disease. J Med Chem 2019; 62:2638-2650. [DOI: 10.1021/acs.jmedchem.8b01949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|