1
|
Synthesis, Luminescence and magnetic properties of dinuclear complexes based on a “pincer” Schiff base and different β-diketonate ligands. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Biros ES, Ward CL, Allen MJ, Lutter JC. Identification of seven-coordinate Ln III ions in a Ln III[15-MC Fe III N(shi)-5](OAc) 2Cl species crystallized from methanol and pyridine. JOURNAL OF CHEMICAL CRYSTALLOGRAPHY 2022; 52:152-160. [PMID: 35602264 PMCID: PMC9122301 DOI: 10.1007/s10870-021-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/13/2021] [Indexed: 06/03/2023]
Abstract
The title metallacrown (MC) complexes LnIII[15-MCFeIIIN(shi)-5](OAc)2CI(C5H5N)6 (Ln1), where OAc- is acetate, shi3- is salicylhydroximate, and Ln = Gd and Dy, were synthesized via a self-assembly reaction in methanol and pyridine. Single crystals were grown using slow evaporation and characterized using X-ray diffraction. Seven-coordinate capped octahedron geometries were observed for the lanthanide ion in both complexes, which is uncommon for trivalent lanthanide species. The 15-MC-5 is a ruffled metallacrown archetype similar to previously reported mixed-valent manganese metallacrowns.
Collapse
Affiliation(s)
- Elizabeth S. Biros
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Cassandra L. Ward
- Lumingen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, MI. 48202, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jacob C. Lutter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
3
|
Eliseeva SV, Travis JR, Nagy SG, Smihosky AM, Foley CM, Kauffman AC, Zaleski CM, Petoud S. Visible and near-infrared emitting heterotrimetallic lanthanide-aluminum-sodium 12-metallacrown-4 compounds: discrete monomers and dimers. Dalton Trans 2022; 51:5989-5996. [PMID: 35352078 DOI: 10.1039/d1dt04277g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The luminescence properties of two types of heterotrimetallic aluminum-lanthanide-sodium 12-metallacrown-4 compounds are presented here, LnNa(ben)4[12-MCAl(III)N(shi)-4] (LnAl4Na) and {LnNa[12-MCAl(III)N(shi)-4]}2(iph)4 (Ln2Al8Na2), where Ln = GdIII, TbIII, ErIII, and YbIII, MC is metallacrown, ben- is benzoate, shi3- is salicylhydroximate, and iph2- is isophthalate. The aluminum-lanthanide-sodium metallacrowns formed with benzoate are discrete monomers while, upon replacement of the benzoate with the dicarboxylate isophthalate, two individual metallacrowns can be joined to form a dimer. In the solid state, the terbium version of each structure type displays emission in the visible region, and the erbium and ytterbium complexes emit in the near-infrared. The luminescence lifetimes (τobs) and quantum yields have been collected under ligand excitation (QLLn) for both LnAl4Na monomers and Ln2Al8Na2 dimers. Several of these values tend to be shorter (luminescence lifetimes) and smaller (quantum yields) than the corresponding values recorded for the structurally similar gallium-lanthanide monomer and dimer 12-MC-4 molecules. However, the quantum yield value recorded for the visible emitting Tb2Al8Na2 dimer, 43.9%, is the highest value observed in the solid state to date for a TbIII based metallacrown.
Collapse
Affiliation(s)
- Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France.
| | - Jordan R Travis
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Sarah G Nagy
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Alyssa M Smihosky
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Collin M Foley
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Abigail C Kauffman
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Curtis M Zaleski
- Department of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA.
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France.
| |
Collapse
|
4
|
Karns JP, Eliseeva SV, Ward CL, Allen MJ, Petoud S, Lutter JC. Near-Infrared Lanthanide-Based Emission from Fused Bis[Ln(III)/Zn(II) 14-metallacrown-5] Coordination Compounds. Inorg Chem 2022; 61:5691-5695. [PMID: 35377626 PMCID: PMC9418598 DOI: 10.1021/acs.inorgchem.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A set of (Ln[14-MCZn(II)N(quinHA)-5])2Ln2Zn2(quinHA)2(ph)2(Hph)4(OH)8(H2O)4 metallacrowns (Ln-1, Ln = Tb, Gd, or Yb; H2quinHA = quinaldic hydroxamic acid, H2ph = phthalic acid) have been synthesized via solution-state self-assembly. The metallacrowns possess an uncommon topology within the metallacrown family where two rarely seen 14-metallacrown-5 moieties are fused by a Yb2Zn2(quinHA)2 bridge. Moreover, Yb-1 analyzed in the solid state exhibits a characteristic near-infrared luminescence signal arising from Yb3+ 2F5/2→2F7/2 transition despite the proximity of high energy O-H oscillators.
Collapse
Affiliation(s)
- John P Karns
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Cassandra L Ward
- Lumingen Instrument Center, Wayne State University, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Jacob C Lutter
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
Eliseeva SV, Nguyen TN, Kampf JW, Trivedi ER, Pecoraro VL, Petoud S. Tuning the photophysical properties of lanthanide(iii)/zinc(ii) 'encapsulated sandwich' metallacrowns emitting in the near-infrared range. Chem Sci 2022; 13:2919-2931. [PMID: 35382470 PMCID: PMC8905956 DOI: 10.1039/d1sc06769a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/22/2022] [Indexed: 11/21/2022] Open
Abstract
A family of Zn16Ln(HA)16 metallacrowns (MCs; Ln = YbIII, ErIII, and NdIII; HA = picoline- (picHA2-), pyrazine- (pyzHA2-), and quinaldine- (quinHA2-) hydroximates) with an 'encapsulated sandwich' structure possesses outstanding luminescence properties in the near-infrared (NIR) and suitability for cell imaging. Here, to decipher which parameters affect their functional and photophysical properties and how the nature of the hydroximate ligands can allow their fine tuning, we have completed this Zn16Ln(HA)16 family by synthesizing MCs with two new ligands, naphthyridine- (napHA2-) and quinoxaline- (quinoHA2-) hydroximates. Zn16Ln(napHA)16 and Zn16Ln(quinoHA)16 exhibit absorption bands extended into the visible range and efficiently sensitize the NIR emissions of YbIII, ErIII, and NdIII upon excitation up to 630 nm. The energies of the lowest singlet (S1), triplet (T1) and intra-ligand charge transfer (ILCT) states have been determined. LnIII-centered total (Q L Ln) and intrinsic (Q Ln Ln) quantum yields, sensitization efficiencies (η sens), observed (τ obs) and radiative (τ rad) luminescence lifetimes have been recorded and analyzed in the solid state and in CH3OH and CD3OD solutions for all Zn16Ln(HA)16. We found that, within the Zn16Ln(HA)16 family, τ rad values are not constant for a particular LnIII. The close in energy positions of T1 and ILCT states in Zn16Ln(picHA)16 and Zn16Ln(quinHA)16 are preferred for the sensitization of LnIII NIR emission and η sens values reach 100% for NdIII. Finally, the highest values of Q L Ln are observed for Zn16Ln(quinHA)16 in the solid state or in CD3OD solutions. With these data at hand, we are now capable of creating MCs with desired properties suitable for NIR optical imaging.
Collapse
Affiliation(s)
- Svetlana V Eliseeva
- Centre de Biophysique Moléculaire CNRS UPR 4301 F-45071 Orléans Cedex 2 France
| | - Tu N Nguyen
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan Ann Arbor Michigan 48109 USA
| | - Jeff W Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan Ann Arbor Michigan 48109 USA
| | - Evan R Trivedi
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan Ann Arbor Michigan 48109 USA
| | - Vincent L Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan Ann Arbor Michigan 48109 USA
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR 4301 F-45071 Orléans Cedex 2 France
| |
Collapse
|
6
|
Lutter JC, Boron TT, Chadwick KE, Davis AH, Kleinhaus S, Kampf JW, Zaleski CM, Pecoraro VL. Identification of slow magnetic relaxation and magnetocoolant capabilities of heterobimetallic lanthanide-manganese metallacrown-like compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Lewis AJ, Garlatti E, Cugini F, Solzi M, Zeller M, Carretta S, Zaleski CM. Slow Magnetic Relaxation of a 12-Metallacrown-4 Complex with a Manganese(III)–Copper(II) Heterometallic Ring Motif. Inorg Chem 2020; 59:11894-11900. [DOI: 10.1021/acs.inorgchem.0c01410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex J. Lewis
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, Pennsylvania 17257, United States
| | - Elena Garlatti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 1-43124 Parma, Italy
- Udr Parma, INSTM, 1-43124 Parma, Italy
| | - Francesco Cugini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 1-43124 Parma, Italy
| | - Massimo Solzi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 1-43124 Parma, Italy
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 1-43124 Parma, Italy
- Udr Parma, INSTM, 1-43124 Parma, Italy
| | - Curtis M. Zaleski
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, Pennsylvania 17257, United States
| |
Collapse
|
9
|
Rheam RE, Zeller M, Zaleski CM. Crystal structures of three anionic lanthanide-aluminium [3.3.1] metallacryptate complexes. Acta Crystallogr E Crystallogr Commun 2020; 76:1458-1466. [PMID: 32939300 PMCID: PMC7472759 DOI: 10.1107/s2056989020010725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022]
Abstract
The three isomorphous [3.3.1] metallacryptate complexes bis-(pyridinium) di-aqua-dipyridine-hexa-kis-[μ3-salicyl-hydroximato(3-)]bis-[μ2-salicyl-hydroxim-ato(1-)]hexa-aluminiumgadolinium-pyridine-water (1/7.396/1), (C5H6N)2[GdAl6(C7H6NO3)2(C7H4NO3)7(C5H5N)1.855(H2O)2]·7.396C5H5N·H2O or [Hpy]2[GdAl6(H2shi)2(shi)7(py)1.855(H2O)2]·7.396py·H2O, 1, bis-(pyridinium) di-aqua-dipyridine-hexa-kis-[μ3-salicyl-hydroximato(3-)]bis-[μ2-salicyl-hydroxim-ato(1-)]hexa-aluminiumdysprosium-pyridine-water (1/7.429/1), (C5H6N)2[DyAl6(C7H6NO3)2(C7H4NO3)7(C5H5N)1.855(H2O)2]·7.429C5H5N·H2O or [Hpy]2[DyAl6(H2shi)2(shi)7(py)1.891(H2O)2]·7.429py·H2O, 2, and bis-(pyrid-in-ium) di-aqua-dipyridine-hexa-kis-[μ3-salicyl-hydroximato(3-)]bis-[μ2-salicyl-hydrox-imato(1-)]hexa-aluminiumytterbium-pyridine-water (1/7.386/1), (C5H6N)2[YbAl6(C7H6NO3)2(C7H4NO3)7(C5H5N)1.855(H2O)2]·7.429C5H5N·H2O or [Hpy]2[YbAl6(H2shi)2(shi)7(py)1.818(H2O)2]·7.386py·H2O, 3, where Hpy+ is pyridinium, shi3- is salicyl-hydroximate, and py is pyridine, consist of an aluminium-based metallacryptand that captures an Ln III ion in the central cavity. The metallacryptand portions are comprised of an Al-N-O repeat unit; thus, they can be considered three-dimensional metallacrowns. The encapsulated Ln III ions are nine-coordinate with a spherical capped-square-anti-prism geometry, while the six AlIII ions are all octa-hedral. Four of the AlIII ions are chiral centers with 2 Δ and 2 Λ stereoconfigurations. The remaining two AlIII ions have trans chelate rings from two different shi3- ligands. For 1-3, a section of the main mol-ecule is disordered induced by the presence or absence of a pyridine ligand coordinated to one of the AlIII ions. In the absence of the pyridine moiety, an H2shi- ligand moves into the space otherwise occupied by the pyridine and the phenol oxygen atom coordinates to the AlIII ion. The movement of the H2shi- ligand induces movement for the Ln III ion, for another AlIII ion that also binds the same H2shi- ligand, and for one of the shi3- ligands coordinated to the latter AlIII ion. For 1-3 the occupancy ratio of the metallacryptand portions refined to 0.8550 (13):0.1450 (13), to 0.8909 (13):0.1091 (13), and to 0.8181 (14):0.1819 (14), respectively.
Collapse
Affiliation(s)
- Rachel E. Rheam
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Curtis M. Zaleski
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA
| |
Collapse
|
10
|
Travis JR, Van Trieste III GP, Zeller M, Zaleski CM. Crystal structures of two dysprosium-aluminium-sodium [3.3.1] metallacryptates that form two-dimensional sheets. Acta Crystallogr E Crystallogr Commun 2020; 76:1378-1390. [PMID: 32844034 PMCID: PMC7405589 DOI: 10.1107/s2056989020010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022]
Abstract
The two [3.3.1] metallacryptate complexes, namely, poly[[μ3-acetato-hexa-kis-(μ-N,N-di-methyl-formamide)-bis-(N,N-di-methyl-formamide)bis-[salicyl-hydroxi-mato(2-)]hepta-kis-[salicyl-hydrox-im-ato(3-)]hexa-aluminium(III)dysprosium(III)penta-sodium(I)] N,N-di-methyl-formamide tetra-solvate monohydrate], [DyAl6Na5(OAc)(Hshi)2(shi)7(DMF)8]·4DMF·H2O or {[DyAl6Na5(C7H5NO3)2(C7H4NO3)7(C2H3O2)(C3H7NO)8]·4C3H7NO·H2O} n , 1, and poly[[di-μ4-acetato-nona-kis-(μ-N,N-di-methyl-form-amide)-octa-kis-(N,N-di-methyl-formamide)tetra-kis-[sali-cyl-hydroximato(2-)]tetra-deca-kis-[salicyl-hydroximato(3-)]dodeca-aluminium(III)didysprosium(III)deca-sodium(I)] N,N-di-methyl-form-amide 6.335-solvate], [DyAl6Na5(OAc)(Hshi)2(shi)7(DMF)8.5]2·6.335DMF or {[Dy2Al12Na10(C7H5NO3)4(C7H4NO3)14(C2H3O2)2(C3H7NO)17]·6.335C3H7NO} n , 2, where shi3- is salicyl-hydroximate and DMF is N,N-di-methyl-formamide, both consist of an aluminium-based metallacryptand. In 1 and 2, the metallacryptand encapsulates a dysprosium(III) ion in the central cavity, and the resulting metallacryptates are connected to each other via sodium-DMF linkages to generate a two-dimensional sheet. The metallacryptates of 1 and 2 are the three-dimensional analogues of metallacrowns as the metallacryptates contain a metal-nitro-gen-oxygen cyclic repeat unit throughout the complexes. For 1 the building block of the two-dimensional sheet is comprised of only one type of metallacryptate, which is connected to four neighboring metallacryptates via four sodium-DMF linkages. In 2, the building block is a dimeric unit of two metallacryptates. Each dimeric metallacryptate unit is connected to four other dimeric units via six sodium-DMF linkages. The two metallacryptates of each dimeric unit can be considered enanti-omers of each other. In both 1 and 2, chirality is imparted to the metallacryptate due to the Λ and Δ propeller configurations of the four octa-hedral aluminium ions of the metallacryptand shell.
Collapse
Affiliation(s)
- Jordan R. Travis
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA
| | | | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Curtis M. Zaleski
- Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA
| |
Collapse
|
11
|
Lutter JC, Eliseeva SV, Collet G, Martinić I, Kampf JW, Schneider BL, Carichner A, Sobilo J, Lerondel S, Petoud S, Pecoraro VL. Iodinated Metallacrowns: Toward Combined Bimodal Near‐Infrared and X‐Ray Contrast Imaging Agents. Chemistry 2020; 26:1274-1277. [DOI: 10.1002/chem.201905241] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob C. Lutter
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | | | - Guillaume Collet
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Ivana Martinić
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Jeff W. Kampf
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Bernadette L. Schneider
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Aidan Carichner
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Julien Sobilo
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphanie Lerondel
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphane Petoud
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Vincent L. Pecoraro
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| |
Collapse
|
12
|
Sun O, Chen P, Li HF, Gao T, Yan PF. Wheel-like {Ln6} luminescent lanthanide complexes covering the visible and near-infrared domains. CrystEngComm 2020. [DOI: 10.1039/d0ce00652a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescence properties of wheel-like lanthanide complexes.
Collapse
Affiliation(s)
- Ou Sun
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- People's Republic of China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- People's Republic of China
| | - Hong-Feng Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- People's Republic of China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- People's Republic of China
| | - Peng-Fei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- People's Republic of China
| |
Collapse
|
13
|
Nguyen TN, Eliseeva SV, Chow CY, Kampf JW, Petoud S, Pecoraro VL. Peculiarities of crystal structures and photophysical properties of GaIII/LnIII metallacrowns with a non-planar [12-MC-4] core. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01647c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The direct synthetic approach can be used to create a series of visible and near-infrared emitting GaIII/LnIII metallacrowns with a non-planar [12-MC-4] core.
Collapse
Affiliation(s)
- Tu N. Nguyen
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | | | - Chun Y. Chow
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | - Jeff W. Kampf
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- F-45071 Orléans Cedex 2
- France
| | - Vincent L. Pecoraro
- Department of Chemistry
- Willard H. Dow Laboratories
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
14
|
Lutter JC, Lopez Bermudez BA, Nguyen TN, Kampf JW, Pecoraro VL. Functionalization of luminescent lanthanide-gallium metallacrowns using copper-catalyzed alkyne-azide cycloaddition and thiol-maleimide Michael addition. J Inorg Biochem 2019; 192:119-125. [DOI: 10.1016/j.jinorgbio.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
15
|
Zhang HG, Du YC, Yang H, Zhuang MY, Li DC, Dou JM. A new family of {Co4Ln8} metallacrowns with a butterfly-shaped structure. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00661c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of cobalt–lanthanide metallacrowns (MCs) {CoIII4Ln8} (Ln = Dy3+1, Ho3+2 and Tm3+3) based on pyrazinehydroxamic acid (H2pyzha) and pyrazinic acid (Hpyzic) ligands have been synthesized.
Collapse
Affiliation(s)
- Hong-Gang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Yu-Chang Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Man-Yun Zhuang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemical and Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| |
Collapse
|