1
|
Tuo DH, Fa S, Tanaka S, Shimada T, Yamashita M, Togari Y, Ohtani S, Kato K, Urayama K, Zhang Q, Yasuhara K, Ogoshi T. Helical-Sense Matching Facilitates Supramolecular Copolymerization of Helical-Chiral Pillar[5]arenes. J Am Chem Soc 2024; 146:31816-31824. [PMID: 39527493 DOI: 10.1021/jacs.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Supramolecular polymerization using two-dimensional π-conjugated chiral monomers has been mainly demonstrated because the supramolecular polymerization can be controlled by stereocommunication through π-π stacking between the two-dimensional chiral monomers. We herein report supramolecular copolymerization utilizing three-dimensional pentahedrons with twisted helical chirality through different combinations of helical-chiral acidic and basic pillar[5]arenes as comonomers. In this case, helical-sense matching is key to facilitating the supramolecular copolymerization. Based on the unique helical chirality of the three-dimensional pillared structure of the pillar[5]arenes and alternate ion-pairing interactions between acidic and basic groups on their bilateral rims, the homochiral helical-sense matching system forms kinetically stable nanowire-shaped supramolecular copolymers, generating the supramolecular gel in high concentrations. At elevated temperatures, the nanowire structure undergoes a transformation into thermodynamically stable nanoparticles, resulting in a gel-to-sol transition. This process can be hindered by introducing linear guest molecules, which prohibit the unit swing of pillar[5]arenes and stabilize the nanowires and supramolecular gel. By tailoring the enantiomeric ratio (e.r.) values of the chiral combinations, the helical-sense-dependent gel-to-sol transition was realized, specifically by decreasing the e.r. values. Because of helical-sense mismatching, the heterochiral system generates short, branched nanowires and presents as a turbid solution. These distinct differences reveal that the helical-sense matching between three-dimensional chiral pillar[5]arene comonomers is important for supramolecular copolymerization.
Collapse
Affiliation(s)
- De-Hui Tuo
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Seigo Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Shimada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masataka Yamashita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Togari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Horin I, Slovak S, Cohen Y. Harnessing Pillar[5]arene Host-Guest Complexation To Improve pH Stability and Affect Enzymatic Degradation of the Anticancer Prodrug Capecitabine: A 19 F NMR Study. Chemistry 2023; 29:e202301628. [PMID: 37303257 DOI: 10.1002/chem.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Cancer is a global health problem, and supramolecular chemotherapy is emerging as a novel strategy to battle the disease. Here, we first evaluated the thermodynamic and kinetic stability of the complexes formed between several water-soluble per-substituted pillar[5]arene derivatives and capecitabine (1), a widely used oral chemotherapeutic prodrug. The exchange rate was studied, for the first time in pillararene chemistry, by the 19 F guest exchange saturation transfer (GEST) NMR technique. Importantly, when we evaluated the effect of complexation on the characteristics of 1, we found that the complexation of 1 with such pillar[5]arene hosts increased capecitabine stability at acidic pH very significantly and slowed its enzymatic degradation by the carboxylesterase enzyme in a manner that depended on the host. These interesting findings could have implications on the clinical use of this heavily used prodrug and might affect the management of cancer patients.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, 6977801, Tel Aviv, Israel
| |
Collapse
|
3
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
4
|
Kato K, Ohtani S, Fa S, Ogoshi T. Discrete and Continuous One-Dimensional Channels Based on Pillar[ n]arenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Zhao M, Li C, Shan X, Han H, Zhao Q, Xie M, Chen J, Liao X. A Stretchable Pillararene-Containing Supramolecular Polymeric Material with Self-Healing Property. Molecules 2021; 26:2191. [PMID: 33920289 PMCID: PMC8070141 DOI: 10.3390/molecules26082191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022] Open
Abstract
Constructing polymeric materials with stretchable and self-healing properties arise increasing interest in the field of tissue engineering, wearable electronics and soft actuators. Herein, a new type of supramolecular cross-linker was constructed through host-guest interaction between pillar[5]arene functionalized acrylate and pyridinium functionalized acrylate, which could form supramolecular polymeric material via photo-polymerization of n-butyl acrylate (BA). Such material exhibited excellent tensile properties, with maximum tensile strength of 3.4 MPa and strain of 3000%, respectively. Moreover, this material can effectively dissipate energy with the energy absorption efficiency of 93%, which could be applied in the field of energy absorbing materials. In addition, the material showed self-healing property after cut and responded to competitive guest.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Changjun Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Jianzhuang Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| |
Collapse
|
7
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
9
|
Tian H, Wang C, Li H, Deng R, Li R, Meguellati K. A New Cationic Functionalized Pillar[5]arene and Applications for Adsorption of Anionic Dyes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Huasheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Haiying Li
- Faculty of Chemistry; College of Chemistry; Northeast Normal University; 5268 Renmin Street 130024 Changchun PR China
| | - Rong Deng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Runan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| |
Collapse
|
10
|
Kaizerman-Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH-Responsive Pillar[6]arene-based Water-Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019; 58:5302-5306. [PMID: 30786135 DOI: 10.1002/anie.201900217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Indexed: 01/08/2023]
Abstract
We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Noam Tal
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
11
|
Kaizerman‐Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH‐Responsive Pillar[6]arene‐based Water‐Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dana Kaizerman‐Kane
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Maya Hadar
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Noam Tal
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Roman Dobrovetsky
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Yossi Zafrani
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
- Department of Organic ChemistryIsrael Institute for Biological Research Ness-Ziona 740000 Israel
| | - Yoram Cohen
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| |
Collapse
|
12
|
Cohen Y, Slovak S. Diffusion NMR for the characterization, in solution, of supramolecular systems based on calixarenes, resorcinarenes, and other macrocyclic arenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00329k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of diffusion NMR in studying calixarenes and other arene-based supramolecular systems is described, emphasizing the pivotal role played by the calixarene community in transforming the methods into a routine tool used in supramolecular chemistry.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Sarit Slovak
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
13
|
Kaizerman-Kane D, Hadar M, Granot E, Patolsky F, Zafrani Y, Cohen Y. Shape induced sorting via rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Org Chem Front 2019. [DOI: 10.1039/c9qo00717b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first two-component rim-to-rim pillar[6]arene-based supramolecular organogels were prepared. Shape complementarity was found to be an important determinant in the formation of such gels which also show shape-induced sorting in their formation.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Maya Hadar
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Eran Granot
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Fernando Patolsky
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yossi Zafrani
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|