1
|
Uhrmacher F, Elbert SM, Rominger F, Mastalerz M. Synthesis of Large [2+3] Salicylimine Cages with Embedded Metal‐Salphen Units. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Uhrmacher
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
2
|
Deegan MM, Dworzak MR, Gosselin AJ, Korman KJ, Bloch ED. Gas Storage in Porous Molecular Materials. Chemistry 2021; 27:4531-4547. [PMID: 33112484 DOI: 10.1002/chem.202003864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Kyle J Korman
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
3
|
Duan R, Hu C, Zhou Y, Huang Y, Sun Z, Zhang H, Pang X. Propylene Oxide Cycloaddition with Carbon Dioxide and Homopolymerization: Application of Commercial Beta Zeolites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Han Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Ueberricke L, Mastalerz M. Triptycene End-Capping as Strategy in Materials Chemistry to Control Crystal Packing and Increase Solubility. CHEM REC 2021; 21:558-573. [PMID: 33411413 DOI: 10.1002/tcr.202000161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In materials chemistry of polycyclic aromatic compounds (PACs) the kind of aggregation and the spatial arrangement of the π-planes are of utmost importance, e. g. for charge transport properties. Unfortunately, controlling these during crystallization is not trivial. In the past decade, we have introduced one-fold triptycene end-capping of quinoxalinophenanthrophenazines (QPPs) and other related structures to overcome this problem. When two instead of one triptycene end-caps are introduced, packing is largely suppressed, making typical PACs or pigments soluble in common organic solvents - which is another important property for such compounds to be processable from solution. In this account an overview of our research on using triptycene end-capping as dual strategy is given.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im NeuenheimerFeld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Reinhard D, Rominger F, Mastalerz M. Desymmetrization Strategy to Achieve Triptycene‐Based 3,6‐Dimethoxytriphenylenes via Oxidative Cyclodehydrogenation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dennis Reinhard
- Organisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
6
|
Zelada-Guillén GA, Hernández-Pacheco P, Romero-Ávila M, Cañas-Alonso RC, Flores-Álamo M, Escárcega-Bobadilla MV. Acrylic Polymers Containing a Nickel Salphen Complex: An Approach to Supramolecular and Macromolecular Systems. Chempluschem 2020; 85:2546-2556. [PMID: 32945594 DOI: 10.1002/cplu.202000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and crystallographic analysis is reported of a new Nickel Salphen complex and its radical copolymerization with n-butyl acrylate and methyl methacrylate to produce novel host macromolecules with tunable association against guest anions. Spectrophotometric titrations of the complex and of the polymers revealed that a supramolecular regulation of guest-binding accessibility was enabled by the number of Ni-Salphen units per chain. The latter content in turn, determined the chain size and molecular weight uniformity upon polymerization, and likely increased the strength in interchain/intrachain non-covalent interactions over the nickel center and the acrylic domains. The study also showed that incorporation of the monomer into the acrylic polymer backbone opened the possibility for the nickel binding site to gain access to host:guest stoichiometric discrimination, switching from 1 : 1 (major) and 1 : 2 (minor) both coexisting for the host when in the free form, to mostly 1 : 2 when in the polymerized version.
Collapse
Affiliation(s)
- Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Paulina Hernández-Pacheco
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Roberto Carlos Cañas-Alonso
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Marcos Flores-Álamo
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Miroslaw B. Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int J Mol Sci 2020; 21:E3493. [PMID: 32429112 PMCID: PMC7278988 DOI: 10.3390/ijms21103493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118-119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
8
|
Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UHF, Mastalerz M, Waldvogel SR. Microporous Triptycene-Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds. Chempluschem 2020; 84:1239-1244. [PMID: 31944043 DOI: 10.1002/cplu.201900189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes. Remarkable results were found for safrole - a starting material for illicit compounds such as ecstasy. A systematic approach highlights the effects of different size of π-surfaces of these affinity materials, allowing a classification of the properties that might be optimal for the design of future OMIM-based affinity materials.
Collapse
Affiliation(s)
- Ephraim Prantl
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bernd Kohl
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Dimitrij Ryvlin
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philipp Biegger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 271, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
9
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
10
|
Ueberricke L, Holub D, Kranz J, Rominger F, Elstner M, Mastalerz M. Triptycene End-Capped Quinoxalinophenanthrophenazines (QPPs): Influence of Substituents and Conditions on Aggregation in the Solid State. Chemistry 2019; 25:11121-11134. [PMID: 31210369 DOI: 10.1002/chem.201902002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 11/07/2022]
Abstract
Triptycene end-capped quinoxalinophenanthrophenazine reveals a coplanar arrangement with a high overlap of the π planes. Four structurally related model compounds bearing electron-withdrawing or -donating groups were synthesized, and their optoelectronic properties were characterized by using cyclovoltammetry, absorption- and emission spectroscopy as well as theoretical calculations. The directional robustness of the triptycene end-capping of these compounds was tested by using single-crystal X-ray diffraction. The impact of solvents and crystallization conditions has also been investigated. In total, 17 single-crystal structures were obtained. Each structure was evaluated for its potential charge-transfer capability taking into account the overall molecular packing, solvent enclathration and the structural overlap of the π planes of adjacent molecules. For this purpose, charge-transfer integrals were also calculated for every π-stacked dimer.
Collapse
Affiliation(s)
- Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Daniel Holub
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Julian Kranz
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Elstner
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|