1
|
Li Y, Han D, Luo Z, Lv X, Liu B. The Chan-Lam-type synthesis of thioimidazolium salts for thiol-(hetero)arene conjugation. Chem Commun (Camb) 2024; 60:4675-4678. [PMID: 38591667 DOI: 10.1039/d4cc00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The design of stable and variable aryl linkers for conjugating drug moieties to the metabolism-related thiols is of importance in drug discovery. We disclosed that thioimidazolium groups are unique scaffolds for the thiol-(hetero)arene conjugation under mild conditions. The drug bound thioimidazolium salts, which are easily accessible via a copper-mediated Chan-Lam process in gram-scale, could be successfully applied to the late-stage coupling of bioactive thiols to construct a broad array of drug-like molecules.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Dongchang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhibin Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
3
|
Abedinifar F, Bahadorikhalili S, Larijani B, Mahdavi M, Verpoort F. A review on the latest progress of C‐S cross‐coupling in diaryl sulfide synthesis: Update from 2012 to 2021. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Saeed Bahadorikhalili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Center for Environmental and Energy Research (CEER) Ghent University–Global Campus Songdo Incheon South Korea
| |
Collapse
|
4
|
Merad J, Matyašovský J, Stopka T, Brutiu BR, Pinto A, Drescher M, Maulide N. Stable and easily available sulfide surrogates allow a stereoselective activation of alcohols. Chem Sci 2021; 12:7770-7774. [PMID: 34168830 PMCID: PMC8188487 DOI: 10.1039/d1sc01602d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Isothiouronium salts are easily accessible and stable compounds. Herein, we report their use as versatile deoxasulfenylating agents enabling a stereoselective, thiol-free protocol for synthesis of thioethers from alcohols. The method is simple, scalable and tolerates a broad range of functional groups otherwise incompatible with other methods. Late-stage modification of several pharmaceuticals provides access to multiple analogues of biologically relevant molecules. Performed experiments give insight into the reaction mechanism. A simple and scalable method for stereoselective synthesis of thioethers directly from alcohols using isothiouronium salts is presented. The utility of this thiol-free reaction was exemplified by late-stage modification of complex molecules.![]()
Collapse
Affiliation(s)
- Jérémy Merad
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at.,Univ. Lyon, Université Claude Bernard Lyon 1, CNRS CPE Lyon, INSA Lyon, ICBMS, UMR 5246 Bât. Lederer 1 rue Victor Grignard 69622 Villeurbanne France
| | - Ján Matyašovský
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Tobias Stopka
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Bogdan R Brutiu
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Alexandre Pinto
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Martina Drescher
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| | - Nuno Maulide
- Department of Organic Chemistry, University of Vienna Währinger Straße 38 1090 Vienna Austria http://maulide.univie.ac.at
| |
Collapse
|
5
|
Kim H, Kim M, Song H, Lee E. Indol‐2‐ylidene (IdY): Ambiphilic N‐Heterocyclic Carbene Derived from Indole**. Chemistry 2021; 27:3849-3854. [DOI: 10.1002/chem.202004879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hyunho Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Minseop Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Hayoung Song
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| |
Collapse
|
6
|
Batista GMF, de Castro PP, dos Santos JA, Skrydstrup T, Amarante GW. Synthetic developments on the preparation of sulfides from thiol-free reagents. Org Chem Front 2021. [DOI: 10.1039/d0qo01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review covers the main thiolating reagents with respect to their characteristics and reactivities. In fact, they are complementary to each other and bring different thiolation strategies, avoiding the hazardous thiol derivatives.
Collapse
Affiliation(s)
- Gabriel M. F. Batista
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
- Carbon Dioxide Activation Center (CADIAC)
| | - Pedro P. de Castro
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)
- Interdisciplinary Nanoscience Center (iNANO)
- and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
| | | |
Collapse
|
7
|
Wang L, Cornella J. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar-SOF 3 Compounds. Angew Chem Int Ed Engl 2020; 59:23510-23515. [PMID: 32940381 PMCID: PMC7756513 DOI: 10.1002/anie.202009699] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/01/2020] [Indexed: 12/20/2022]
Abstract
A convenient protocol to selectively access various arylsulfur(VI) fluorides from commercially available aryl halides in a divergent fashion is presented. Firstly, a novel sulfenylation reaction with the electrophilic N-(chlorothio)phthalimide (Cl-S-Phth) and arylzinc reagents afforded the corresponding Ar-S-Phth compounds. Subsequently, the S(II) atom was selectively oxidized to distinct fluorinated sulfur(VI) compounds under mild conditions. Slight modifications on the oxidation protocol permit the chemoselective installation of 1, 3, or 4 fluorine atoms at the S(VI) center, affording the corresponding Ar-SO2 F, Ar-SOF3 , and Ar-SF4 Cl. Of notice, this strategy enables the effective introduction of the rare and underexplored -SOF3 moiety into various (hetero)aryl groups. Reactivity studies demonstrate that such elusive Ar-SOF3 can be utilized as a linchpin for the synthesis of highly coveted aryl sulfonimidoyl fluorides (Ar-SO(NR)F).
Collapse
Affiliation(s)
- Lin Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| |
Collapse
|
8
|
Wang L, Cornella J. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar‐SOF
3
Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lin Wang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| |
Collapse
|
9
|
Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Transition-metal mediated carbon-sulfur bond activation and transformations: an update. Chem Soc Rev 2020; 49:4307-4359. [PMID: 32458881 DOI: 10.1039/c9cs00837c] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Carbon-sulfur bond cross-coupling has become more and more attractive as an alternative protocol to establish carbon-carbon and carbon-heteroatom bonds. Diverse transformations through transition-metal-catalyzed C-S bond activation and cleavage have recently been developed. This review summarizes the advances in transition-metal-catalyzed cross-coupling via carbon-sulfur bond activation and cleavage since late 2012 as an update of the critical review on the same topic published in early 2013 (Chem. Soc. Rev., 2013, 42, 599-621), which is presented by the categories of organosulfur compounds, that is, thioesters, thioethers including heteroaryl, aryl, vinyl, alkyl, and alkynyl sulfides, ketene dithioacetals, sulfoxides including DMSO, sulfones, sulfonyl chlorides, sulfinates, thiocyanates, sulfonium salts, sulfonyl hydrazides, sulfonates, thiophene-based compounds, and C[double bond, length as m-dash]S functionality-bearing compounds such as thioureas, thioamides, and carbon disulfide, as well as the mechanistic insights. An overview of C-S bond cleavage reactions with stoichiometric transition-metal reagents is briefly given. Theoretical studies on the reactivity of carbon-sulfur bonds by DFT calculations are also discussed.
Collapse
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ping Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Arora G, Yadav M, Gaur R, Gupta R, Rana P, Yadav P, Sharma RK. A template free protocol for fabrication of a Ni(ii)-loaded magnetically separable nanoreactor scaffold for confined synthesis of unsymmetrical diaryl sulfides in water. RSC Adv 2020; 10:19390-19396. [PMID: 35515473 PMCID: PMC9054047 DOI: 10.1039/d0ra02287j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
In the present report, an environmentally benign magnetically recoverable nickel(ii)-based nanoreactor as a heterogeneous catalyst has been developed via a template free approach. The catalytic performance of the synthesized catalyst is assessed in the confined oxidative coupling of arenethiols with arylhydrazines to form unsymmetrical diaryl sulfides under aerobic conditions. The salient features of our protocol include oxidant- and ligand-free conditions, use of water as a green solvent, room temperature and formation of nitrogen and water as the only by-products. Moreover, a broad range of functional groups are tolerated well and provide the corresponding diaryl sulfides in moderate to good yields. Moreover, the heterogeneous nature of the catalyst permits facile magnetic recovery and reusability for up to seven runs, making the present protocol highly desirable from industrial and environmental standpoints. An environmentally benign nickel(ii)-based magnetic nanoreactor has been developed for oxidative coupling of arenethiols with arylhydrazines to form unsymmetrical diaryl sulfides in water at room temperature.![]()
Collapse
Affiliation(s)
- Gunjan Arora
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Manavi Yadav
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rashmi Gaur
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Radhika Gupta
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Pooja Rana
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Priya Yadav
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
11
|
Acosta-Guzmán P, Rodríguez-López A, Gamba-Sánchez D. Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org Lett 2019; 21:6903-6908. [PMID: 31441312 DOI: 10.1021/acs.orglett.9b02520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The competition between an unprecedented reductive chlorination and the Pummerer reaction was studied and applied to the synthesis of benzofused oxygen heterocycles including 3-aminochromanes and in the intramolecular chlorination of activated aromatic rings. The use of (COCl)2 as a Pummerer activator showed substantial activity, producing α-chlorinated sulfides that can undergo Pummerer-Friedel-Crafts cyclization. If the aromatic ring has electron-donating groups in position three, then the reaction follows a different pathway, yielding the reductive chlorination products, where the chlorine atom comes from a sulfonium salt.
Collapse
Affiliation(s)
- Paola Acosta-Guzmán
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Alvaro Rodríguez-López
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| |
Collapse
|
12
|
Ji YZ, Li HJ, Zhang JY, Wu YC. Switchable regioselection of C–H thiolation of indoles using different TMS counterions. Chem Commun (Camb) 2019; 55:11864-11867. [DOI: 10.1039/c9cc05652a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Simply swapping the counteranions of TMS leads to a switchable regioselectivity in C2– and C3–H thiolation of indoles.
Collapse
Affiliation(s)
- Yuan-Zhao Ji
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
- Weihai Institute of Marine Biomedical Industrial Technology
| | - Jin-Yu Zhang
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
- Weihai Institute of Marine Biomedical Industrial Technology
| |
Collapse
|