1
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
3
|
Orukotan WE, Palate KY, Pogrányi B, Bobinski P, Epton RG, Duff L, Whitwood AC, Grogan G, Lynam JM, Unsworth WP. Divergent Cascade Ring-Expansion Reactions of Acryloyl Imides. Chemistry 2024; 30:e202303270. [PMID: 37987097 DOI: 10.1002/chem.202303270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
Macrocyclic and medium-sized ring ketones, lactones and lactams can all be made from common acryloyl imide starting materials through divergent, one-pot cascade ring-expansion reactions. Following either conjugate addition with an amine or nitromethane, or osmium(VIII)-catalysed dihydoxylation, rearrangement through a four-atom ring expansion takes place spontaneously to form the ring expanded products. A second ring expansion can also be performed following a second iteration of imide formation and alkene functionalisation/ring expansion. In the dihydroxylation series, three- or four-atom ring expansion can be performed selectively, depending on whether the reaction is under kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Will E Orukotan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Balázs Pogrányi
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Philipp Bobinski
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Lee Duff
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
4
|
Noor R, Zahoor AF, Mansha A, Khan SG, Haq AU, Ahmad S, Al-Hussain SA, Irfan A, Zaki MEA. Synthetic Potential of Regio- and Stereoselective Ring Expansion Reactions of Six-Membered Carbo- and Heterocyclic Ring Systems: A Review. Int J Mol Sci 2023; 24:ijms24076692. [PMID: 37047665 PMCID: PMC10094819 DOI: 10.3390/ijms24076692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
Ring expansion reactions fascinate synthetic chemists owing to their importance in synthesizing biologically active compounds and their efficacy in medicinal chemistry. The present review summarizes a number of synthetic methodologies, including stereoselective and regioselective pathways adopted by scientists, for framing medium- to large-size carbo- and heterocycles involving lactams, lactone, azepine and azulene derivatives via ring expansion of six-membered carbo- and heterocycles that have been reported from 2007–2022. Numerous rearrangement and cycloaddition reactions involving Tiffeneau–Demjanov rearrangement, Aza–Claisen rearrangement, Schmidt rearrangement, Beckmann rearrangement, etc., have been described in this regard.
Collapse
Affiliation(s)
- Rida Noor
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
5
|
A Lewis Acid-Promoted Michael Addition and Ring-Expansion Cascade for the Construction of Nitrogen-Containing Medium-Sized Rings. Molecules 2023; 28:molecules28041650. [PMID: 36838638 PMCID: PMC9966210 DOI: 10.3390/molecules28041650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This reaction proceeded through Michael addition and ring-expansion cascade, affording the corresponding nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The catalytic asymmetric version of this reaction has also been explored using a chiral base.
Collapse
|
6
|
Qin X, Zou N, Nong C, Mo D. Recent Advances on the Synthesis of Nine-Membered N-Heterocycles. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Palate KY, Yang Z, Whitwood AC, Unsworth WP. Synthesis of medium-ring lactams and macrocyclic peptide mimetics via conjugate addition/ring expansion cascade reactions. RSC Chem Biol 2022; 3:334-340. [PMID: 35359493 PMCID: PMC8905531 DOI: 10.1039/d1cb00245g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
A novel conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides. The reactions are simple to perform, generally high yielding, and very broad in scope, especially with respect to the primary amine component. CARE reactions can also be performed iteratively, enabling β-peptoid-based macrocyclic peptide mimetics to be ‘grown’ via well controlled, sequential 4-atom ring expansion reactions, with the incorporation of varied functionalised amines during each iteration. A conjugate addition/ring expansion (CARE) cascade reaction sequence is reported that enables medium-sized ring and macrocyclic bis-lactams to be prepared from primary amines and cyclic imides.![]()
Collapse
Affiliation(s)
- Kleopas Y Palate
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Zhongzhen Yang
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| |
Collapse
|
8
|
Qin X, Zou N, Cheng X, Liang C, Mo D. Synthesis of Chiral Nine‐Membered N‐Heterocycles through Silver(I)‐Promoted Cycloaddition and Rearrangement from
N
‐Vinyl‐α,β‐Unsaturated Nitrones with Chiral 3‐Propioloyloxazolidin‐2‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Ting Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Xiao‐Ling Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Cheng C, Zuo X, Tu D, Wan B, Zhang Y. Palladium-catalyzed diastereoselective cross-coupling of two aryl halides via C–H activation: synthesis of chiral eight-membered nitrogen heterocycles. Chem Commun (Camb) 2021; 57:2939-2942. [DOI: 10.1039/d1cc00398d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diastereoselective cross-coupling reaction of two aryl halides has been developed through C–H activation. The reaction represents a novel strategy for the construction of chiral eight-membered nitrogen heterocycles.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- 1239 Siping Road
- Shanghai 200092
| | - Xiang Zuo
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- 1239 Siping Road
- Shanghai 200092
| | - Dongdong Tu
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- 1239 Siping Road
- Shanghai 200092
| | - Bin Wan
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- 1239 Siping Road
- Shanghai 200092
| | - Yanghui Zhang
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- 1239 Siping Road
- Shanghai 200092
| |
Collapse
|
10
|
Zhang X, Lin L, Li J, Duan S, Long Y, Li J. Recent Progress in the Synthesis of Medium-Sized Ring and Macrocyclic Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Lawer A, Epton RG, Stephens TC, Palate KY, Lodi M, Marotte E, Lamb KJ, Sangha JK, Lynam JM, Unsworth WP. Evaluating the Viability of Successive Ring-Expansions Based on Amino Acid and Hydroxyacid Side-Chain Insertion. Chemistry 2020; 26:12674-12683. [PMID: 32432817 PMCID: PMC7589337 DOI: 10.1002/chem.202002164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/20/2023]
Abstract
The outcome of ring-expansion reactions based on amino/hydroxyacid side-chain insertion is strongly dependent on ring size. This manuscript, which builds upon our previous work on Successive Ring Expansion (SuRE) methods, details efforts to better define the scope and limitations of these reactions on lactam and β-ketoester ring systems with respect to ring size and additional functionality. The synthetic results provide clear guidelines as to which substrate classes are more likely to be successful and are supported by computational results, using a density functional theory (DFT) approach. Calculating the relative Gibbs free energies of the three isomeric species that are formed reversibly during ring expansion enables the viability of new synthetic reactions to be correctly predicted in most cases. The new synthetic and computational results are expected to support the design of new lactam- and β-ketoester-based ring-expansion reactions.
Collapse
Affiliation(s)
- Aggie Lawer
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Ryan G. Epton
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | - Mahendar Lodi
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Emilie Marotte
- ENSICAEN6 Boulevard Maréchal Juin, CS 4505314050Caen Cedex 04France
| | - Katie J. Lamb
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | | |
Collapse
|
12
|
Clarke AK, Unsworth WP. A happy medium: the synthesis of medicinally important medium-sized rings via ring expansion. Chem Sci 2020; 11:2876-2881. [PMID: 34122787 PMCID: PMC8152702 DOI: 10.1039/d0sc00568a] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Medium-sized rings have much promise in medicinal chemistry, but are difficult to make using direct cyclisation methods. In this minireview, we highlight the value of ring expansion strategies to address this long-standing synthetic challenge. We have drawn on recent progress (post 2013) to highlight the key reaction design features that enable successful ‘normal-to-medium’ ring expansion for the synthesis of these medicinally important molecular frameworks, that are currently under-represented in compound screening collections and marketed drugs in view of their challenging syntheses. Ring expansion strategies are ideally suited to make synthetically challenging, medium-sized rings with much potential in medicinal chemistry.![]()
Collapse
Affiliation(s)
- Aimee K Clarke
- Department of Chemistry, University of York York YO10 5DD UK
| | | |
Collapse
|
13
|
Zimmermann S, Akbarzadeh M, Otte F, Strohmann C, Sankar MG, Ziegler S, Pahl A, Sievers S, Kumar K. A Scaffold-Diversity Synthesis of Biologically Intriguing Cyclic Sulfonamides. Chemistry 2019; 25:15498-15503. [PMID: 31518018 PMCID: PMC6916640 DOI: 10.1002/chem.201904175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 12/11/2022]
Abstract
A "branching-folding" synthetic strategy that affords a range of diverse cyclic benzo-sulfonamide scaffolds is presented. Whereas different annulation reactions on common ketimine substrates build the branching phase of the scaffold synthesis, a common hydrogenative ring-expansion method, facilitated by an increase of the ring-strain during the branching phase, led to sulfonamides bearing medium-sized rings in a folding pathway. Cell painting assay was successfully employed to identify tubulin targeting sulfonamides as novel mitotic inhibitors.
Collapse
Affiliation(s)
- Stefan Zimmermann
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
- Fakultät Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Mohammad Akbarzadeh
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| | - Felix Otte
- Fakultät Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Carsten Strohmann
- Fakultät Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn Str. 644227DortmundGermany
| | - Muthukumar Gomathi Sankar
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| | - Slava Ziegler
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| | - Axel Pahl
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| | - Sonja Sievers
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| | - Kamal Kumar
- Abteilung Chemische BiologieMax-Planck-Institut für Molekulare PhysiologieOtto-Hahn-Straße 1144227DortmundGermany
| |
Collapse
|
14
|
Dierks A, Tönjes J, Schmidtmann M, Christoffers J. Synthesis of Benzo[b]azocin-2-ones by Aryl Amination and Ring-Expansion of α-(Iodophenyl)-β-oxoesters. Chemistry 2019; 25:14912-14920. [PMID: 31433088 PMCID: PMC6899745 DOI: 10.1002/chem.201903139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 01/16/2023]
Abstract
Transformation of β-oxoesters with PhI(OCOCF3 )2 leads to α-(ortho-iodophenyl)-β-oxoesters. These materials are the starting point for the synthesis of 6-carboxybenzo[b]azocin-2-ones by a sequence of aryl amination and ring transformation. This reaction sequence starts with copper-catalyzed formation of N-alkyl anilines from the iodoarenes and primary amines in the presence of K3 PO4 as stoichiometric base. The intermediate products underwent ring transformation by addition of the nitrogen into the carbonyl group of the cycloalkanone, furnishing benzo-annulated eight-membered ring lactams. Under the same reaction conditions, the cyclohexanone and cycloheptanone derivatives gave no aminated products, but ring-transformed to benzofuran derivatives. The title compounds of this investigation contain two points for further diversification (the lactam nitrogen and the carboxylate function), thus, the suitability of this compound class as a scaffold was proven by appropriate functionalizations. The first series of derivatizations of the scaffold was initiated by hydrogenolytic debenzylation of N-benzyl derivative to provide the NH-congener, which could be deprotonated with LDA and alkylated at nitrogen to give further examples of this compound class. Secondly, the ester function was submitted to saponification and the resulting carboxylic acid could be amidated using HATU as coupling reagent to furnish different amides.
Collapse
Affiliation(s)
- Anna Dierks
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Jan Tönjes
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Marc Schmidtmann
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Jens Christoffers
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| |
Collapse
|
15
|
Lux MC, Boby ML, Brooks JL, Tan DS. Synthesis of bicyclic ethers by a palladium-catalyzed oxidative cyclization-redox relay-π-allyl-Pd cyclization cascade reaction. Chem Commun (Camb) 2019; 55:7013-7016. [PMID: 31147660 DOI: 10.1039/c9cc03775f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bicyclic ether scaffolds are found in a variety of natural products and are of interest in probe and drug discovery. A palladium-catalyzed cascade reaction has been developed to provide efficient access to these scaffolds from readily available linear diene-diol substrates. A Pd redox-relay process is used strategically to transmit reactivity between an initial oxypalladative cyclization and a subsequent π-allyl-Pd cyclization at remote sites. The reaction affords a variety of bicyclic ether scaffolds with complete diastereoselectivity for cis-ring fusion.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Melissa L Boby
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Joshua L Brooks
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.
| |
Collapse
|
16
|
Reyes Loya D, De Paolis M. Nucleophilic‐Addition‐Initiated Ring Expansion and Selectivity in Anionic Fragmentation. Chemistry 2018; 25:1842-1847. [DOI: 10.1002/chem.201802862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- David Reyes Loya
- Normandie UniversitéUNIROUEN, INSA de RouenCNRS, Laboratoire COBRA(UMR 6014 & FR 3038) 76000 Rouen France
| | - Michaël De Paolis
- Normandie UniversitéUNIROUEN, INSA de RouenCNRS, Laboratoire COBRA(UMR 6014 & FR 3038) 76000 Rouen France
| |
Collapse
|