1
|
Deng QS, Zhang YS, Wang YX, Xie Y, Fu PX, Gao S, Liu Z, Jiang SD. Orthogonal magnetic orbitals in high spin Cu-VO units: structure, magnetism and EPR study of anisotropic heterometallic complexes. Dalton Trans 2024; 53:13207-13215. [PMID: 39051156 DOI: 10.1039/d4dt01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Molecular-based magnetic materials are expected to serve as building blocks for quantum bits. To realize high-dimensional Hilbert space and addressability, we constructed anisotropic multi-level systems based on CuII and VIV with orthogonal magnetic orbitals. The crystal structures and intramolecular magnetic couplings of four CuIIVOII complexes [{CuVO(appen)2}2], [{CuVO(fhma)2EDA}2], [{CuVO(hfca)2EDA}2] and [CuVO(hfca)2DPEDA]n are characterized. Due to the orthogonal magnetic orbitals of CuII and VIV, the Cu-V pairs in the four complexes have strong ferromagnetic couplings, and the coupling strength is linearly related to the dihedral angle between the two equatorial planes of the two coordination polyhedra. Because of the triplet ground state, the system can be described by an effective Hamiltonian model consisting of two S = 1 spins coupled together. The anisotropy parameters of [{CuVO(hfca)2EDA}2] and [CuVO(hfca)2DPEDA]n were obtained by the simulation of X-band continuous wave electron paramagnetic resonance (cw-EPR) spectra, confirming that both complexes have zero-field splitting addressable on the relative energy scale. The results indicate that constructing multi-centre complexes based on orthogonal magnetic orbitals is a promising strategy for designing multidimensional quantum bits.
Collapse
Affiliation(s)
- Qing-Song Deng
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China.
| | - Yu-Shuang Zhang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China.
| | - Ye-Xin Wang
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, NO.3 Binglang Road, Futian District, Shenzhen, Guangdong, 518045, China
| | - Yi Xie
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China.
| | - Peng-Xiang Fu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Gao
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China.
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zheng Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442, China.
| |
Collapse
|
2
|
Scurti S, Caretti D, Mollica F, Di Antonio E, Amorati R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11061163. [PMID: 35740061 PMCID: PMC9219998 DOI: 10.3390/antiox11061163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
Collapse
Affiliation(s)
- Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Erika Di Antonio
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
- Correspondence:
| |
Collapse
|