1
|
Peptide-Based Hydrogels and Nanogels Containing Gd(III) Complexes as T1 Relaxation Agents. Pharmaceuticals (Basel) 2022; 15:ph15121572. [PMID: 36559023 PMCID: PMC9787396 DOI: 10.3390/ph15121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
New peptide-based hydrogels incorporating Gd(III) chelates with different hydration states, molecular structures and overall negative charges ([Gd(BOPTA)]2−), [Gd(DTPA)]2−, and ([Gd(AAZTA)]−) were prepared and characterized. N-terminal Fmoc- or acetyl-derivatized hexapeptides (K1, K2 and K3) containing five aliphatic amino acids (differently ordered Gly, Ala, Val, Leu and Ile) and a charged lysine at the amidated C-terminal were used for the formation of the hydrogels. Particular attention was paid to the investigation of the morphological and rheological properties of the nanoparticles, in addition to the assessment of the ability (relaxivity) of the confined complexes to accelerate the longitudinal relaxation rate of the water protons localized in the polymeric network. The relaxivity values at high magnetic fields (>0.5 T) of the paramagnetic hydrogels appear to be more than five times higher than those of isolated chelates in an aqueous solution, reaching a value of 25 mmol−1 s−1 for Fmoc-K2+[Gd(BOPTA)]2− at 0.5 T and 310 K. Furthermore, an interesting trend of decrease of relaxivity with increasing the degree of rigidity of the hydrogel was observed. The type of interactions between the various complexes and the polymeric network also plays a key role in influencing the relaxivity values of the final materials. Nanogels were also obtained from the submicronization of the hydrogel containing [Gd(BOPTA)]2− chelate. Circular dichroism, dynamic light scattering and relaxometric investigations on these nanoparticles revealed the formation of nanogels endowed with higher relaxivities (r1 = 41 mM−1 s−1 at 0.5 T MHz and 310 K) than the corresponding hydrogels.
Collapse
|
2
|
Piras CC, Mahon CS, Genever PG, Smith DK. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles. ACS Biomater Sci Eng 2022; 8:1829-1840. [PMID: 35364810 PMCID: PMC9092345 DOI: 10.1021/acsbiomaterials.1c01560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Hydrogels
with spatio-temporally
controlled properties are appealing
materials for biological and pharmaceutical applications. We make
use of mild acidification protocols to fabricate hybrid gels using
calcium alginate in the presence of a preformed thermally triggered
gel based on a low-molecular-weight gelator (LMWG) 1,3:2:4-di(4-acylhydrazide)-benzylidene
sorbitol (DBS-CONHNH2). Nonwater-soluble calcium carbonate
slowly releases calcium ions over time when exposed to an acidic pH,
triggering the assembly of the calcium alginate gel network. We combined
the gelators in different ways: (i) the LMWG was used as a template
to spatially control slow calcium alginate gelation within preformed
gel beads, using glucono-δ-lactone (GdL) to lower the pH; (ii)
the LMWG was used as a template to spatially control slow calcium
alginate gelation within preformed gel trays, using diphenyliodonium
nitrate (DPIN) as a photoacid to lower the pH, and spatial resolution
was achieved by masking. The dual-network hybrid gels display highly
tunable properties, and the beads are compatible with stem cell growth.
Furthermore, they preserve the LMWG function of inducing in situ silver
nanoparticle (AgNP) formation, which provides the gels with antibacterial
activity. These gels have potential for eventual regenerative medicine
applications in (e.g.) bone tissue engineering.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Clare S Mahon
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Paul G Genever
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Rosa E, Diaferia C, Gianolio E, Sibillano T, Gallo E, Smaldone G, Stornaiuolo M, Giannini C, Morelli G, Accardo A. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Macromol Biosci 2022; 22:e2200128. [PMID: 35524744 DOI: 10.1002/mabi.202200128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/10/2022]
Abstract
In the last years, peptide based hydrogels are being increasingly used as suitable matrices for biomedical and pharmaceutical applications, including drug delivery and tissue engineering. Recently, we decrived the synthesis and the gelation properties of a small library of cationic peptides, containing a Lys residue at the C-teminus and derivatized with a Fmoc group or with the Fmoc-diphenylalanine (FmocFF) at the N-terminus. Here, we demonstrate that the combination of these peptides with the well known hydrogelator FmocFF, in different weight/weight ratios, allows the achievement of seven novel self-sorted hydrogels, which share similar peptide organization of their supramolecular matrix. Rheological and relaxometric characterization highlighted a different mechanical rigidity and water mobility in the gels as demostrated by the storage modulus values (200 Pa<G'<35000 Pa) and by relaxometry, respectively. In vitro studied demonstrated that most of the tested mixed hydrogels do not disturb significantly the cell viability (>95%) over 72h of treatment. Moreover, in virtue to its capability to strongly favour adhesion, spreading and duplication of 3T3-L1 cells, one of the tested hydrogel may be eligible as sinthetic extracellular matrix. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | | | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| |
Collapse
|
4
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
5
|
Piras CC, Smith DK. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator. Chemistry 2021; 27:14527-14534. [PMID: 34339068 PMCID: PMC8597049 DOI: 10.1002/chem.202102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/25/2023]
Abstract
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol - smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a "stamp" - circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a "solid-like" network prevents its leaching from the gel. The LMWG also retains its own unique function - specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
6
|
Cooke HS, Schlichter L, Piras CC, Smith DK. Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels. Chem Sci 2021; 12:12156-12164. [PMID: 34667581 PMCID: PMC8457394 DOI: 10.1039/d1sc03155d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 01/24/2023] Open
Abstract
To achieve spatial resolution of a multi-component gel, a double diffusion approach is used which enables the precise programming of self-assembled patterned domains with well-defined shapes and sizes. The low-molecular-weight gelators (LMWGs) used in this study are pH-responsive DBS-CO2H and thermally-responsive DBS-CONHNH2 (both based on 1,3:2,4-dibenzylidenesorbitol, DBS). A DBS-CONHNH2 gel was initially assembled in a tray, and then loaded at carefully-selected positions with either basified DBS-CO2H (i.e. DBS-carboxylate) or an acid. These soluble components subsequently diffuse through the pre-formed gel matrix, and in the domains when/where they mix, protonation of the DBS-carboxylate induces self-assembly of the DBS-CO2H network, leading to a patterned gel-in-gel object with well-defined shape and dimensions. Using a strong acid achieves fast gelation kinetics, creating smaller, better-defined macroscale objects but with less nanoscale order. Using a weak acid source with slow kinetics, gives slightly larger objects, but on the nanoscale the DBS-CO2H network formation is better controlled, giving more homogeneous nanoscale structures and stiffer objects. The patterned objects can be further reinforced by the presence of agarose polymer gelator. The shape of the patterning is programmed by both the shape of the central reservoir and the starting geometry in which the reservoirs are organised, with the balance between factors depending on assembly kinetics, as dictated by the choice of acid. This simple methodology therefore enables programming of patterned gels with spatiotemporal control and emergent patterning characteristics. To achieve spatial resolution of a multi-component gel, a double diffusion approach is used which enables the precise programming of emergent self-assembled patterned domains with well-defined shapes and sizes.![]()
Collapse
Affiliation(s)
- Hannah S Cooke
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lisa Schlichter
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
7
|
Piras CC, Patterson AK, Smith DK. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery. Chemistry 2021; 27:13203-13210. [PMID: 34346527 PMCID: PMC8519141 DOI: 10.1002/chem.202101405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
This article describes the fabrication of new pH-responsive hybrid gel beads combining the polymer gelator calcium alginate with two different low-molecular-weight gelators (LMWGs) based on 1,3 : 2,4-dibenzylidene-d-sorbitol: pH-responsive DBS-COOH and thermally responsive DBS-CONHNH2 , thus clearly demonstrating that different classes of LMWG can be fabricated into gel beads by using this approach. We also demonstrate that self-assembled multicomponent gel beads can be formed by using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness - the DBS-COOH network can disassemble within those beads in which it is present upon raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 - primary control of this process results from the pKa of the API. The extent of pH-mediated API release is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, whereas the three-component DBS-COOH/DBS-CONHNH2 /alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug-delivery applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | | - David K. Smith
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| |
Collapse
|
8
|
Patterson AK, Smith DK. Two-component supramolecular hydrogel for controlled drug release. Chem Commun (Camb) 2021; 56:11046-11049. [PMID: 32810197 DOI: 10.1039/d0cc03962d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hybrid gel has been developed by combining two supramolecular gelators. Each gelator endows the hybrid gel with its own characteristics. One gelator enables pH-mediated controlled release of the active pharmaceutical ingredient naproxen, while the other new gelator enhances mechanical stability. Self-assembly thus gives multi-functional gels with potential applications.
Collapse
Affiliation(s)
- Anna K Patterson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
9
|
Schlichter L, Piras CC, Smith DK. Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels. Chem Sci 2021; 12:4162-4172. [PMID: 34163689 PMCID: PMC8179439 DOI: 10.1039/d0sc06862d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The dynamic assembly of a pH-responsive low-molecular-weight gelator (LMWG) within the pre-formed matrix of a second LMWG has been achieved via diffusion of an acid from a reservoir cut into the gel. Self-assembly of the acid-triggered LMWG as it converts from micellar aggregates at basic pH into gel nanofibers at lower pH values can be both spatially and temporally controlled. The pH-responsive LMWG has an impact on the stiffness of the pre-formed gel in the domains in which it assembles. When low acid concentrations are used, LMWG assembly is transient – after the initial proton diffusion phase, the pH rises and disassembly occurs as the system equilibrates. Re-application of additional acid as ‘fuel’ can then re-assemble the LMWG network. Using glucono-δ-lactone (which slowly hydrolyses to gluconic acid) instead of HCl gives slower, more spatially-restricted assembly, and creates longer-lasting pH gradients within the gel. The presence of an agarose polymer gel network improves the mechanical strength of the gels and appears to slightly enhance the rate of proton diffusion. More sophisticated reservoir shapes can be cut into these more mechanically robust gels, enabling the creation of diffusion waves with different geometries, and hence different patterns of LMWG activation. Multiple reservoirs can be used to create overlapping proton diffusion waves, hence achieving differentiated pH patterns in the gel. Using acid diffusion in this way within gels is an intriguing and powerful way of dynamic patterning. The ability to temporally-evolve spatially-resolved patterns using biocompatible weak acids, and the change in rheological performance of the triggered domains, suggest potential future applications of this strategy in tissue engineering. The assembly of a pH-sensitive LMWG within a pre-formed network of a second LMWG can be achieved by diffusing acids from pre-cut reservoirs, giving rise to patterned gels in which the rheological properties evolve with spatial and temporal control.![]()
Collapse
Affiliation(s)
- Lisa Schlichter
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
10
|
Piras CC, Kay AG, Genever PG, Smith DK. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents. Chem Sci 2021; 12:3958-3965. [PMID: 34163666 PMCID: PMC8179440 DOI: 10.1039/d0sc06296k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Alasdair G Kay
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - Paul G Genever
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
11
|
Ghosh A, Schmittel M. Using multiple self-sorting for switching functions in discrete multicomponent systems. Beilstein J Org Chem 2020; 16:2831-2853. [PMID: 33281986 PMCID: PMC7684700 DOI: 10.3762/bjoc.16.233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Over years self-sorting has developed into a powerful tool in supramolecular chemistry, for instance, to promote the error-free formation of intricate multicomponent assemblies. However, in order to use the enormous potential of self-sorting for sophisticated information processing more recent developments have focused on the reversible reconfiguration of multicomponent systems driven by multiple self-sorting protocols. The present mini review will provide an overview over the latest advancements in this field with a focus on reversibly switchable functions in discrete supramolecular systems.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
12
|
Shigemitsu H, Kubota R, Nakamura K, Matsuzaki T, Minami S, Aoyama T, Urayama K, Hamachi I. Protein-responsive protein release of supramolecular/polymer hydrogel composite integrating enzyme activation systems. Nat Commun 2020; 11:3859. [PMID: 32737298 PMCID: PMC7395795 DOI: 10.1038/s41467-020-17698-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
Non-enzymatic proteins including antibodies function as biomarkers and are used as biopharmaceuticals in several diseases. Protein-responsive soft materials capable of the controlled release of drugs and proteins have potential for use in next-generation diagnosis and therapies. Here, we describe a supramolecular/agarose hydrogel composite that can release a protein in response to a non-enzymatic protein. A non-enzymatic protein-responsive system is developed by hybridization of an enzyme-sensitive supramolecular hydrogel with a protein-triggered enzyme activation set. In situ imaging shows that the supramolecular/agarose hydrogel composite consists of orthogonal domains of supramolecular fibers and agarose, which play distinct roles in protein entrapment and mechanical stiffness, respectively. Integrating the enzyme activation set with the composite allows for controlled release of the embedded RNase in response to an antibody. Such composite hydrogels would be promising as a matrix embedded in a body, which can autonomously release biopharmaceuticals by sensing biomarker proteins.
Collapse
Affiliation(s)
- Hajime Shigemitsu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Keisuke Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Tomonobu Matsuzaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Saori Minami
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|
13
|
Piras CC, Mahon CS, Smith DK. Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. Chemistry 2020; 26:8452-8457. [PMID: 32294272 PMCID: PMC7384024 DOI: 10.1002/chem.202001349] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Indexed: 12/28/2022]
Abstract
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI , with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Clare S. Mahon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
14
|
Piras CC, Slavik P, Smith DK. Self-Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2020; 59:853-859. [PMID: 31697017 PMCID: PMC6973155 DOI: 10.1002/anie.201911404] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 12/11/2022]
Abstract
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core-shell-structured gel beads-a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Petr Slavik
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
15
|
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
16
|
Piras CC, Slavik P, Smith DK. Self‐Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Petr Slavik
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - David K. Smith
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| |
Collapse
|
17
|
Okesola B, Wu Y, Derkus B, Gani S, Wu D, Knani D, Smith DK, Adams DJ, Mata A. Supramolecular Self-Assembly To Control Structural and Biological Properties of Multicomponent Hydrogels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7883-7897. [PMID: 31631941 PMCID: PMC6792223 DOI: 10.1021/acs.chemmater.9b01882] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Indexed: 05/07/2023]
Abstract
Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing the tunability and functionality of this class of materials. We report on the synergistic multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-dibenzylidene-d-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle neutron scattering, and molecular dynamics approaches, we confirm that the PA undergoes self-sorting, while the DBS gelator acts as an additive modifier for the PA nanofibers. The supramolecular interactions between the PA and DBS gelators result in improved bulk properties and cytocompatibility of the two-component hydrogels as compared to those of the single-component systems. The tunable mechanical properties, self-healing ability, resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
Collapse
Affiliation(s)
- Babatunde
O. Okesola
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Yuanhao Wu
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Burak Derkus
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Biomedical
Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Samar Gani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - Dongsheng Wu
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Dafna Knani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Dave J. Adams
- School
of
Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
18
|
Chalard A, Joseph P, Souleille S, Lonetti B, Saffon-Merceron N, Loubinoux I, Vaysse L, Malaquin L, Fitremann J. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments. NANOSCALE 2019; 11:15043-15056. [PMID: 31179473 DOI: 10.1039/c9nr02727k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we describe how a simple single low molecular weight gelator (LMWG) molecule - N-heptyl-d-galactonamide, which is easy to produce at the gram scale - is spun into gel filaments by a wet spinning process based on solvent exchange. A solution of the gelator in DMSO is injected into water and the solvent diffusion triggers the supramolecular self-assembly of the N-heptyl-d-galactonamide molecules into nanometric fibers. These fibers entrap around 97% of water, thus forming a highly hydrated hydrogel filament, deposited in a well organized coil and locally aligned. This self-assembly mechanism also leads to a very narrow distribution of the supramolecular fiber width, around 150 nm. In addition, the self-assembled fibers are oriented radially inside the wet-spun filaments and at a high flow rate, fibers are organized in spirals. As a result, this process gives rise to a high control of the gelator self-assembly compared with the usual thermal sol-gel transition. This method also opens the way to the controlled extrusion at room temperature of these very simple, soft, biocompatible but delicate hydrogels. The gelator concentration and the flow rates leading to the formation of the gel filaments have been screened. The filament diameter, its internal morphology, the solvent exchange and the velocity of the jet have been investigated by video image analysis and electron microscopy. The stability of these delicate hydrogel ropes has been studied, revealing a polymorphic transformation into macroscopic crystals with time under some storage conditions. The cell viability of a neuronal cell line on the filaments has also been estimated.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chiriac AP, Ghilan A, Neamtu I, Nita LE, Rusu AG, Chiriac VM. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Biosci 2019; 19:e1900187. [DOI: 10.1002/mabi.201900187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina Ghilan
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical UniversityFaculty of ElectronicsTelecommunications and Information Technology Bd. Carol I no. 11A 700506 Iaşi Romania
| |
Collapse
|
20
|
Piras CC, Smith DK. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials. Chemistry 2019; 25:11318-11326. [PMID: 31237367 DOI: 10.1002/chem.201902158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Indexed: 11/09/2022]
Abstract
A two-component self-sorting hydrogel based on acylhydrazide and carboxylic acid derivatives of 1,3:2,4-dibenzylidene-d-sorbitol (DBS-CONHNH2 and DBS-COOH) is reported. A heating-cooling cycle induces the self-assembly of DBS-CONHNH2 , followed by the self-assembly of DBS-COOH induced by decreasing pH. Although the networks are formed sequentially, there is spectroscopic evidence of interactions between them, which impact on the mechanical properties and significantly enhance the ability of these low-molecular-weight gelators (LMWGs) to form gels when mixed. The DBS-COOH network can be switched "off" and "on" within the two-component gel through a pH change. By using a photo-acid generator, the two-component gel can be prepared combining the thermal trigger with photo-irradiation. Photo-patterned self-assembly of DBS-COOH within a pre-formed DBS-CONHNH2 gel under a mask yields spatially controlled multi-domain gels. Different gel domains can have different functions, for example, controlling the rate of release of heparin incorporated into the gel, or directing gold nanoparticle assembly. Such photo-patterned multi-component hydrogels have potential applications in regenerative medicine or bio-nano-electronics.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
21
|
Steck K, van Esch JH, Smith DK, Stubenrauch C. Tuning gelled lyotropic liquid crystals (LLCs) - probing the influence of different low molecular weight gelators on the phase diagram of the system H 2O/NaCl-Genapol LA070. SOFT MATTER 2019; 15:3111-3121. [PMID: 30758020 DOI: 10.1039/c8sm02330a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gelled lyotropic liquid crystals (LLCs) are highly tunable multi-component materials. By studying a selection of low molecular weight gelators (LMWGs), we find gelators that form self-assembled gels in LLCs without influencing their phase boundaries. We studied the system H2O/NaCl-Genapol LA070 in the presence of (a) the organogelators 12-hydroxyoctadecanoic acid (12-HOA) and 1,3:2,4-dibenzylidene-d-sorbitol (DBS) and (b) the hydrogelators N,N'-dibenzoyl-l-cystine (DBC) and a tris-amido-cyclohexane derivative (HG1). Visual phase studies and oscillation shear frequency sweeps confirmed that 12-HOA acts as co-surfactant (stabilizing the lamellar Lα phase and destabilizing the hexagonal H1 phase), thus preventing gelation. Conversely, DBS was a potent gelator for LLCs, with the phase boundaries un-influenced by the presence of DBS; gelled lamellar Lα, and softly-gelled hexagonal H1 phases are formed. For the hydrogelator DBC, the LLC phase boundaries were only slightly altered, but no gelled LLCs were formed. For the hydrogelator HG1, however, the phase boundaries were unaffected while gelled lamellar Lα and softly-gelled hexagonal H1 phases were formed. Temperature-dependent rheology measurements demonstrated that by changing the DBS or the HG1 concentration, the sol-gel transition temperature of the gelled lamellar Lα phase can be adjusted such that (a) Tsol-gel is below the Lα-isotropic phase transition (DBS, HG1 mass fraction η = 0.0075) and (b) Tsol-gel is above the gelled Lα-isotropic phase transition (DBS, HG1 η = 0.015). This opens the possibility of temporal materials control by addressing phase transitions in different orders. As this system contains oil and water, both the organogelator DBS and the hydrogelator HG1 can gel these LLCs, but this clearly does not apply to all organogelators/hydrogelators. The study indicates that careful optimization of LMWGs is required to avoid interaction with the surfactant layer and to optimize the Tsol-gel value, which is important for the application of LMWGs in gelled LLCs.
Collapse
Affiliation(s)
- Katja Steck
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
22
|
Zhang B, Dong Y, Li J, Yu Y, Li C, Cao L. Pseudo[
n
,
m
]rotaxanes of Cucurbit[7/8]uril and Viologen‐Naphthalene Derivative: A Precise Definition of Rotaxane. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Beilin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Yunhong Dong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Jie Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Chenyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
23
|
Medved'ko AV, Dalinger AI, Nuriev VN, Semashko VS, Filatov AV, Ezhov AA, Churakov AV, Howard JAK, Shiryaev AA, Baranchikov AE, Ivanov VK, Vatsadze SZ. Supramolecular Organogels Based on N-Benzyl, N'-Acylbispidinols. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E89. [PMID: 30641896 PMCID: PMC6359647 DOI: 10.3390/nano9010089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl- anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
Collapse
Affiliation(s)
- Alexey V Medved'ko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - Vyacheslav N Nuriev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vera S Semashko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrei V Filatov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | - Andrey A Shiryaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia.
| | - Alexander E Baranchikov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Faculty of Material Science, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Sergey Z Vatsadze
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
24
|
Slavík P, Kurka DW, Smith DK. Palladium-scavenging self-assembled hybrid hydrogels - reusable highly-active green catalysts for Suzuki-Miyaura cross-coupling reactions. Chem Sci 2018; 9:8673-8681. [PMID: 30647883 PMCID: PMC6301269 DOI: 10.1039/c8sc04561e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
A hybrid hydrogel based on 1,3:2,4-dibenzylidene sorbitol (DBS) modified with acyl hydrazides combined with agarose was used for in situ reduction and binding of palladium from aqueous mixtures without the need for an external reducing agent. Palladium uptake was monitored and the formation of Pd nanoparticles (PdNPs) trapped within the gel and located close to the nanofibres was confirmed. This gel effectively scavenges palladium from solution to concentrations < 0.04 ppm - well below the recommended limits for pharmaceutical products. The resulting hybrid hydrogel with embedded PdNPs was used as a catalyst for Suzuki-Miyaura cross-coupling reactions. The gel network stabilises PdNPs, preventing aggregation/leaching and giving excellent catalytic lifetimes. The gel acts as a simple reaction dosing form, being simply added to reactions performed in green solvents in air. Once reactions are complete, the gel can be simply removed, recycled and reused (>10 times). Reactions were purified by simple washing protocols, and leaching of Pd from the gels is limited (<1 ppm). The gels were also used in flow-through mode, giving efficient, rapid reactions, with easy work-up. These catalytic gels combine advantages of homogeneous and heterogeneous catalysts - they are solvent compatible with the reaction taking place in a solution-like environment, while the solid-like gel network enables catalyst recycling. In summary, these hydrogels scavenge 'waste' palladium and convert it into gel 'wealth' capable of efficient, environmentally-friendly Suzuki-Miyaura catalysis.
Collapse
Affiliation(s)
- Petr Slavík
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK .
| | - Dustin W Kurka
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK .
| | - David K Smith
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|