1
|
Huang W, Guo C, Zhai J, Xie X. Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores. Anal Chem 2022; 94:9793-9800. [PMID: 35772106 DOI: 10.1021/acs.analchem.2c01532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy has been widely used in developing biosensors and immunoassays, by virtue of the self-reference and environment-sensitive properties. However, fluorescence anisotropic chemical sensors on inorganic ions are limited by the total anisotropy change. To this end, we demonstrate here fluorescence anisotropic ion-selective optodes based on the homo-FRET (Förster resonance energy transfer) of the crowded chromoionophores. The conventional fluorescence on-off mode is transformed into the anisotropic mode. Variation of the target ion concentration changes the inter-chromoionophore distance in the organic sensing phase, leading to different extents of homo-FRET and steady-state anisotropy. A theoretical model is developed by coupling homo-FRET and anisotropy. Anisotropic detections of pH, K+, and Na+ are demonstrated as examples based on the different ionophores for H+, K+, and Na+, respectively. Further, fluorescence imaging of the nano-optodes, plasticized poly(vinyl chloride) sensing films, and live cells are demonstrated using a homemade fluorescence anisotropic imaging platform. The results form the basis of an ion-selective analytical method operating in the fluorescence anisotropic mode, which could potentially be applied to other fluorescence on-off probes based on homo-FRET.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Guernelli M, Menichetti A, Guidetti G, Costantini PE, Calvaresi M, Danielli A, Mazzaro R, Morandi V, Montalti M. pH Switchable Water Dispersed Photocatalytic Nanoparticles. Chemistry 2022; 28:e202200118. [PMID: 35384090 PMCID: PMC9321822 DOI: 10.1002/chem.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/12/2022]
Abstract
Photogeneration of Reactive Oxygen Species (ROS) finds applications in fields as different as nanomedicine, art preservation, air and water depollution and surface decontamination. Here we present photocatalytic nanoparticles (NP) that are active only at acidic pH while they do not show relevant ROS photo‐generation at neutral pH. This dual responsivity (to light and pH) is achieved by stabilizing the surface of TiO2 NP with a specific organic shell during the synthesis and it is peculiar of the achieved core shell‐structure, as demonstrated by comparison with commercial photocatalytic TiO2 NP. For the investigation of the photocatalytic activity, we developed two methods that allow real time detection of the process preventing any kind of artifact arising from post‐treatments and delayed analysis. The reversibility of the pH response was also demonstrated as well as the selective photo‐killing of cancer cells at acidic pH.
Collapse
Affiliation(s)
- Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Gloria Guidetti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Paolo Emidio Costantini
- Department of Pharmacy and Biotechnology University of Bologna Via Selmi 3 40126 Bologna Italy
| | - Matteo Calvaresi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology University of Bologna Via Selmi 3 40126 Bologna Italy
| | - Raffaello Mazzaro
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Bologna 40129 Italy
| | - Vittorio Morandi
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Bologna 40129 Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
3
|
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L, Amorati R, Zaccheroni N. Nitroxides as Building Blocks for Nanoantioxidants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31996-32004. [PMID: 34156238 PMCID: PMC8289242 DOI: 10.1021/acsami.1c06674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitroxides are an important class of radical trapping antioxidants whose promising biological activities are connected to their ability to scavenge peroxyl (ROO•) radicals. We have measured the rate constants of the reaction with ROO• (kinh) for a series of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) derivatives as 5.1 × 106, 1.1 × 106, 5.4 × 105, 3.7 × 105, 1.1 × 105, 1.9 × 105, and 5.6 × 104 M-1 s-1 for -H, -OH, -NH2, -COOH, -NHCOCH3, -CONH(CH2)3CH3, and ═O substituents in the 4 position, with a good Marcus relationship between log (kinh) and E° for the R2NO•/R2NO+ couple. Newly synthesized Pluronic-silica nanoparticles (PluS) having nitroxide moieties covalently bound to the silica surface (PluS-NO) through a TEMPO-CONH-R link and coumarin dyes embedded in the silica core, has kinh = 1.5 × 105 M-1 s-1. Each PluS-bound nitroxide displays an inhibition duration nearly double that of a structurally related "free" nitroxide. As each PluS-NO particle bears an average of 30 nitroxide units, this yields an overall ≈60-fold larger inhibition of the PluS-NO nanoantioxidant compared to the molecular analogue. The implications of these results for the development of novel nanoantioxidants based on nitroxide derivatives are discussed, such as the choice of the best linkage group and the importance of the regeneration cycle in determining the duration of inhibition.
Collapse
Affiliation(s)
- Damiano Genovese
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Baschieri
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, 40129 Bologna, Italy
| | - Danilo Vona
- Department
of Chemistry, University of Bari, via Orabona 4, I-70126 Bari, Italy
| | - Ruxandra Elena Baboi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Fabio Mollica
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Luca Prodi
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via San Giacomo 11, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
4
|
Rubini K, Boanini E, Menichetti A, Bonvicini F, Gentilomi GA, Montalti M, Bigi A. Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
De Marco R, Rampazzo E, Zhao J, Prodi L, Paolillo M, Picchetti P, Gallo F, Calonghi N, Gentilucci L. Integrin-Targeting Dye-Doped PEG-Shell/Silica-Core Nanoparticles Mimicking the Proapoptotic Smac/DIABLO Protein. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1211. [PMID: 32575872 PMCID: PMC7353088 DOI: 10.3390/nano10061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Cancer cells demonstrate elevated expression levels of the inhibitor of apoptosis proteins (IAPs), contributing to tumor cell survival, disease progression, chemo-resistance, and poor prognosis. Smac/DIABLO is a mitochondrial protein that promotes apoptosis by neutralizing members of the IAP family. Herein, we describe the preparation and in vitro validation of a synthetic mimic of Smac/DIABLO, based on fluorescent polyethylene glycol (PEG)-coated silica-core nanoparticles (NPs) carrying a Smac/DIABLO-derived pro-apoptotic peptide and a tumor-homing integrin peptide ligand. At low μM concentration, the NPs showed significant toxicity towards A549, U373, and HeLa cancer cells and modest toxicity towards other integrin-expressing cells, correlated with integrin-mediated cell uptake and consequent highly increased levels of apoptotic activity, without perturbing cells not expressing the α5 integrin subunit.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Agricultural, Food, Enviromental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy;
| | - Enrico Rampazzo
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Luca Prodi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Mayra Paolillo
- Department of Drugs Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Pierre Picchetti
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67083 Strasbourg, France;
| | - Francesca Gallo
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (E.R.); (J.Z.); (L.P.); (F.G.)
| |
Collapse
|
6
|
Palomba F, Genovese D, Rampazzo E, Zaccheroni N, Prodi L, Morbidelli L. PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS OMEGA 2019; 4:13962-13971. [PMID: 31497714 PMCID: PMC6714606 DOI: 10.1021/acsomega.9b01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Silica nanostructures are widely investigated for theranostic applications since relatively mild and easy synthetic methods allow the fabrication of multicompartment nanoparticles (NPs) and fine modulation of their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability, up to 45 molecules per NP, of Sorafenib, a small molecule acting as an antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation and migration and network formation. Their lyophilization can endow them with long shelf stability, whereas, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from Pluronic silica NPs completely prevented endothelial cell responses and postreceptor mitogen-activated protein kinase signaling ignited by vascular endothelial growth factor, one of the major players of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anticancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivered.
Collapse
Affiliation(s)
- Francesco Palomba
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Lucia Morbidelli
- Dipartimento
di Scienze della Vita, Università
di Siena, Via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
7
|
Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019; 18:2142-2149. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.
Collapse
Affiliation(s)
- Benedetta Del Secco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Ravotto
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tatiana V Esipova
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sergei A Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|