1
|
Brodsky K, Petránková B, Petrásková L, Pelantová H, Křen V, Valentová K, Bojarová P. New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22208-22216. [PMID: 39351615 PMCID: PMC11468790 DOI: 10.1021/acs.jafc.4c06771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
Collapse
Affiliation(s)
- Katerina Brodsky
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 3, Prague 6 CZ-166 28, Czech Republic
| | - Barbora Petránková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Albertov 6, Prague 2 CZ-128
43, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Helena Pelantová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Kateřina Valentová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Wang X, Li A, Li X, Cui H. Empowering Protein Engineering through Recombination of Beneficial Substitutions. Chemistry 2024; 30:e202303889. [PMID: 38288640 DOI: 10.1002/chem.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
4
|
Lu Y, Hintzen KW, Kurkina T, Ji Y, Schwaneberg U. Directed Evolution of Material Binding Peptide for Polylactic Acid-specific Degradation in Mixed Plastic Wastes. ACS Catal 2023; 13:12746-12754. [PMID: 37822861 PMCID: PMC10564037 DOI: 10.1021/acscatal.3c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Indexed: 10/13/2023]
Abstract
In order to preserve our livelihood for future generations, responsible use of plastics in a climate-neutral and circular economy has to be developed so that plastics can be used in an environmentally friendly way by future generations. The prerequisite is that bioplastic polymers such as polylactic acid (PLA) can be efficiently recycled from petrochemical based plastic. Here, a concept in which accelerated PLA degradation in the mixed suspension of PLA and polystyrene (PS) nanoparticles has been achieved through an engineered material binding peptide. After comparison of twenty material binding peptides, Cg-Def is selected due to its PLA binding specificity. Finally, a suitable high-throughput screening system is developed for enhancing material-specific binding toward PLA in presence of PS. Through KnowVolution campaign, a variant Cg-Def YH (L9Y/S19H) with 2.0-fold improved PLA binding specificity compared to PS is generated. Contact angle and surface plasmon resonance measurements validated higher surface coverage of Cg-Def YH on PLA surface and the fusion of Cg-Def YH with PLA degrading enzyme confirmed the accelerated PLA depolymerization (two times higher than only enzyme) in mixed PLA/PS plastics.
Collapse
Affiliation(s)
- Yi Lu
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Kai-Wolfgang Hintzen
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Ji
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Aachen 52074, Germany
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| |
Collapse
|
5
|
Lu Y, Hintzen K, Kurkina T, Ji Y, Schwaneberg U. A Competitive High-Throughput Screening Platform for Designing Polylactic Acid-Specific Binding Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303195. [PMID: 37612817 PMCID: PMC10582454 DOI: 10.1002/advs.202303195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Among biobased polymers, polylactic acid (PLA) is recognized as one of the most promising bioplastics to replace petrochemical-based polymers. PLA is typically blended with other polymers such as polypropylene (PP) for improved melt processability, thermal stability, and stiffness. A technical challenge in recycling of PLA/PP blends is the sorting/separation of PLA from PP. Material binding peptides (MBPs) can bind to various materials. Engineered MBPs that can bind in a material-specific manner have a high potential for material-specific detection or enhanced degradation of PLA in mixed PLA/PP plastics. To obtain a material-specific MBP for PLA binding (termed PLAbodies ), protein engineering of MBP Cg-Def for improved PLA binding specificity is reported in this work. In detail, a 96-well microtiter plate based high-throughput screening system for PLA specific binding (PLABS) was developed and validated in a protein engineering (KnowVolution) campaign. Finally, the Cg-Def variant V2 (Cg-Def S19K/K10L/N13H) with a 2.3-fold improved PLA binding specificity compared to PP was obtained. Contact angle and surface plasmon resonance measurements confirmed improved material-specific binding of V2 to PLA (1.30-fold improved PLA surface coverage). The established PLABS screening platform represents a general methodology for designing PLAbodies for applications in detection, sorting, and material-specific degradation of PLA in mixed plastics.
Collapse
Affiliation(s)
- Yi Lu
- Institute of BiotechnologyRWTH Aachen University52074AachenGermany
| | - Kai‐Wolfgang Hintzen
- Institute of BiotechnologyRWTH Aachen University52074AachenGermany
- DWI‐Leibniz Institute for Interactive Materials52074AachenGermany
| | - Tetiana Kurkina
- Institute of BiotechnologyRWTH Aachen University52074AachenGermany
| | - Yu Ji
- Institute of BiotechnologyRWTH Aachen University52074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen University52074AachenGermany
- DWI‐Leibniz Institute for Interactive Materials52074AachenGermany
| |
Collapse
|
6
|
Pourhassan ZN, Cui H, Muckhoff N, Davari MD, Smits SHJ, Schwaneberg U, Schmitt L. A step forward to the optimized HlyA type 1 secretion system through directed evolution. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12653-7. [PMID: 37405436 PMCID: PMC10386944 DOI: 10.1007/s00253-023-12653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Secretion of proteins into the extracellular space has great advantages for the production of recombinant proteins. Type 1 secretion systems (T1SS) are attractive candidates to be optimized for biotechnological applications, as they have a relatively simple architecture compared to other classes of secretion systems. A paradigm of T1SS is the hemolysin A type 1 secretion system (HlyA T1SS) from Escherichia coli harboring only three membrane proteins, which makes the plasmid-based expression of the system easy. Although for decades the HlyA T1SS has been successfully applied for secretion of a long list of heterologous proteins from different origins as well as peptides, but its utility at commercial scales is still limited mainly due to low secretion titers of the system. To address this drawback, we engineered the inner membrane complex of the system, consisting of HlyB and HlyD proteins, following KnowVolution strategy. The applied KnowVolution campaign in this study provided a novel HlyB variant containing four substitutions (T36L/F216W/S290C/V421I) with up to 2.5-fold improved secretion for two hydrolases, a lipase and a cutinase. KEY POINTS: • An improvement in protein secretion via the use of T1SS • Reaching almost 400 mg/L of soluble lipase into the supernatant • A step forward to making E. coli cells more competitive for applying as a secretion host.
Collapse
Affiliation(s)
- Zohreh N Pourhassan
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
- Present Address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Neele Muckhoff
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis. Int J Mol Sci 2022; 23:ijms23105743. [PMID: 35628552 PMCID: PMC9147169 DOI: 10.3390/ijms23105743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.
Collapse
|
8
|
Pourhassan N. Z, Cui H, Khosa S, Davari MD, Jaeger K, Smits SHJ, Schwaneberg U, Schmitt L. Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. Chembiochem 2022; 23:e202100702. [PMID: 35062047 PMCID: PMC9306574 DOI: 10.1002/cbic.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Indexed: 11/26/2022]
Abstract
Type 1 secretion systems (T1SS) have a relatively simple architecture compared to other classes of secretion systems and therefore, are attractive to be optimized by protein engineering. Here, we report a KnowVolution campaign for the hemolysin (Hly) enhancer fragment, an untranslated region upstream of the hlyA gene, of the hemolysin T1SS of Escherichia coli to enhance its secretion efficiency. The best performing variant of the Hly enhancer fragment contained five nucleotide mutations at five positions (A30U, A36U, A54G, A81U, and A116U) resulted in a 2-fold increase in the secretion level of a model lipase fused to the secretion carrier HlyA1. Computational analysis suggested that altered affinity to the generated enhancer fragment towards the S1 ribosomal protein contributes to the enhanced secretion levels. Furthermore, we demonstrate that involving a native terminator region along with the generated Hly enhancer fragment increased the secretion levels of the Hly system up to 5-fold.
Collapse
Affiliation(s)
- Zohreh Pourhassan N.
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
- Present address: Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 West Gregory DriveUrbanaIl 61801USA
| | - Sakshi Khosa
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University and Institute of Bio- and Geosciences IBG-1Biotechnology, Forschungszentrum Jülich GmbH52426JülichGermany
| | - Sander H. J. Smits
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052056AachenGermany
| | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine UniversityUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
9
|
Herrmann KR, Brethauer C, Siedhoff NE, Hofmann I, Eyll J, Davari MD, Schwaneberg U, Ruff AJ. Evolution of E. coli Phytase Toward Improved Hydrolysis of Inositol Tetraphosphate. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.838056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein engineering campaigns are driven by the demand for superior enzyme performance under non-natural process conditions, such as elevated temperature or non-neutral pH, to achieve utmost efficiency and conserve limited resources. Phytases are industrial relevant feed enzymes that contribute to the overall phosphorus (P) management by catalyzing the stepwise phosphate hydrolysis from phytate, which is the main phosphorus storage in plants. Phosphorus is referred to as a critical disappearing nutrient, emphasizing the urgent need to implement strategies for a sustainable circular use and recovery of P from renewable resources. Engineered phytases already contribute today to an efficient phosphorus mobilization in the feeding industry and might pave the way to a circular P-bioeconomy. To date, a bottleneck in its application is the drastically reduced hydrolysis on lower phosphorylated reaction intermediates (lower inositol phosphates, ≤InsP4) and their subsequent accumulation. Here, we report the first KnowVolution campaign of the E. coli phytase toward improved hydrolysis on InsP4 and InsP3. As a prerequisite prior to evolution, a suitable screening setup was established and three isomers Ins(2,4,5)P3, Ins(2,3,4,5)P4 and Ins(1,2,5,6)P4 were generated through enzymatic hydrolysis of InsP6 and subsequent purification by HPLC. Screening of epPCR libraries identified clones with improved hydrolysis on Ins(1,2,5,6)P4 carrying substitutions involved in substrate binding and orientation. Saturation of seven positions and screening of, in total, 10,000 clones generated a dataset of 46 variants on their activity on all three isomers. This dataset was used for training, testing, and inferring models for machine learning guided recombination. The PyPEF method used allowed the prediction of recombinants from the identified substitutions, which were analyzed by reverse engineering to gain molecular understanding. Six variants with improved InsP4 hydrolysis of >2.5 were identified, of which variant T23L/K24S had a 3.7-fold improved relative activity on Ins(2,3,4,5)P4 and concomitantly shows a 2.7-fold improved hydrolysis of Ins(2,4,5)P3. Reported substitutions are the first published Ec phy variants with improved hydrolysis on InsP4 and InsP3.
Collapse
|
10
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
11
|
Ji Y, Lu Y, Puetz H, Schwaneberg U. Anchor peptides promote degradation of mixed plastics for recycling. Methods Enzymol 2021; 648:271-292. [PMID: 33579408 DOI: 10.1016/bs.mie.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resource stewardship and sustainable use of natural resources is mandatory for a circular plastic economy. The discovery of microbes and enzymes that can selectively degrade mixed-plastic waste enables to recycle plastics. Knowledge on how to achieve efficient and selective enzymatic plastic degradation is a key prerequisite for biocatalytic recycling of plastics. Wild-type natural polymer degrading enzymes such as cellulases pose often selective non-catalytic binding domains that facilitate a targeting and efficient degradation of polymeric substrates. Recently identified polyester hydrolases with synthetic polymer degrading activities, however, lack in general such selective domains. Inspired by nature, we herein report a protocol for the identification and engineering of anchor peptides which serve as non-catalytic binding domains specifically toward synthetic plastics. The identified anchor peptides hold the promise to be fused to known plastic degrading enzymes and thereby enhance the efficiency of biocatalytic plastic recycling processes.
Collapse
Affiliation(s)
- Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Yi Lu
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Hendrik Puetz
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany.
| |
Collapse
|
12
|
Brands S, Brass HUC, Klein AS, Sikkens JG, Davari MD, Pietruszka J, Ruff AJ, Schwaneberg U. KnowVolution of prodigiosin ligase PigC towards condensation of short-chain prodiginines. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One round of KnowVolution enhanced the catalytic activity of prodigiosin ligase PigC with short-chain monopyrroles, opening access to anticancer prodiginines.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Jarno G. Sikkens
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
13
|
Zou Z, Nöth M, Jakob F, Schwaneberg U. Designed Streptococcus pyogenes Sortase A Accepts Branched Amines as Nucleophiles in Sortagging. Bioconjug Chem 2020; 31:2476-2481. [DOI: 10.1021/acs.bioconjchem.0c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Zou
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Maximilian Nöth
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074 Aachen, Germany
| |
Collapse
|
14
|
Fluorescence-based high-throughput screening system for R-ω-transaminase engineering and its substrate scope extension. Appl Microbiol Biotechnol 2020; 104:2999-3009. [DOI: 10.1007/s00253-020-10444-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
|
15
|
Cui H, Cao H, Cai H, Jaeger K, Davari MD, Schwaneberg U. Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry 2020; 26:643-649. [PMID: 31553080 PMCID: PMC7003928 DOI: 10.1002/chem.201903994] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/09/2023]
Abstract
A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold ). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Hao Cao
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Beijing Bioprocess Key Laboratory and College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Haiying Cai
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf and Research Center Jülich, Wilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
16
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
17
|
Novoa C, Dhoke GV, Mate DM, Martínez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. KnowVolution of a Fungal Laccase toward Alkaline pH. Chembiochem 2019; 20:1458-1466. [DOI: 10.1002/cbic.201800807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Novoa
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Diana M. Mate
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Present address: Center of Molecular Biology “Severo Ochoa”Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - Ronny Martínez
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
- Present address: Departamento de Ingeniería en AlimentosInstituto de Investigación Multidisciplinario en Ciencia y TecnologíaUniversidad de La Serena Raúl Bitrán 1305 1720010 La Serena Chile
| | | | | | - Jasmin Eidner
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | | | - Patrick Lorenz
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
18
|
Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Appl Microbiol Biotechnol 2019; 103:3761-3771. [PMID: 30830250 DOI: 10.1007/s00253-019-09688-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Sulfation is an important way for detoxifying xenobiotics and endobiotics including catechols. Enzymatic sulfation occurs usually with high chemo- and/or regioselectivity under mild reaction conditions. In this study, a two-step p-NPS-4-AAP screening system for laboratory evolution of aryl sulfotransferase B (ASTB) was developed in 96-well microtiter plates to improve the sulfate transfer efficiency toward catechols. Increased transfer efficiency and improved sulfation stoichiometry are achieved through the two-step screening procedure in a one-pot reaction. In the first step, the p-NPS assay is used (detection of the colorimetric by-product, p-nitrophenol) to determine the apparent ASTB activity. The sulfated product, 3-chlorocatechol-1-monosulfate, is quantified by the 4-aminoantipyrine (4-AAP) assay in the second step. Comparison of product formation to p-NPS consumption ensures successful directed evolution campaigns of ASTB. Optimization yielded a coefficient of variation below 15% for the two-step screening system (p-NPS-4-AAP). In total, 1760 clones from an ASTB-SeSaM library were screened toward the improved sulfation activity of 3-chlorocatechol. The turnover number (kcat = 41 ± 2 s-1) and catalytic efficiency (kcat/KM = 0.41 μM-1 s-1) of the final variant ASTB-M5 were improved 2.4- and 2.3-fold compared with ASTB-WT. HPLC analysis confirmed the improved sulfate stoichiometry of ASTB-M5 with a conversion of 58% (ASTB-WT 29%; two-fold improvement). Mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) confirmed the chemo- and regioselectivity, which yielded exclusively 3-chlorocatechol-1-monosulfate. For all five additionally investigated catechols, the variant ASTB-M5 achieved an improved kcat value of up to 4.5-fold and sulfate transfer efficiency was also increased (up to 2.3-fold).
Collapse
|