1
|
Lv H, Liu B. Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis. Chem Soc Rev 2024. [PMID: 39470228 DOI: 10.1039/d4cs00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Ordered intermetallics contribute to a unique class of catalyst materials due to their rich atomic features. Further engineering of ordered intermetallics at a mesoscopic scale is of great importance to expose more active sites and introduce new functions. Recently, multidimensionally ordered mesoporous intermetallic (MOMI) nanoarchitectonics, which subtly integrate atomically ordered intermetallics and mesoscopically ordered mesoporous structures, have held add-in synergies that not only enhance catalytic activity and stability but also optimize catalytic selectivity. In this tutorial review, we have summarized the latest progress in the rational design, targeted synthesis, and catalytic applications of MOMIs, with a special focus on the findings of our group. Three strategies, including concurrent template route, self-template route, and dealloying route, are discussed in detail. Furthermore, physicochemical properties and catalytic performances for several important reactions are also described to highlight the remarkable activity, high stability, and controllable selectivity of MOMI nanoarchitectonics. Finally, we conclude with a summary and explore future perspectives in the field to contribute to wider applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Wang J, Sun J, Khade RL, Chou T, An H, Zhang Y, Wang H. Liposome-Templated Green Synthesis of Mesoporous Metal Nanostructures with Universal Composition for Biomedical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304880. [PMID: 37452439 PMCID: PMC10865450 DOI: 10.1002/smll.202304880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
3
|
Kang Y, Cretu O, Kikkawa J, Kimoto K, Nara H, Nugraha AS, Kawamoto H, Eguchi M, Liao T, Sun Z, Asahi T, Yamauchi Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat Commun 2023; 14:4182. [PMID: 37443103 PMCID: PMC10344865 DOI: 10.1038/s41467-023-39157-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Multimetallic alloys (MMAs) with various compositions enrich the materials library with increasing diversity and have received much attention in catalysis applications. However, precisely shaping MMAs in mesoporous nanostructures and mapping the distributions of multiple elements remain big challenge due to the different reduction kinetics of various metal precursors and the complexity of crystal growth. Here we design a one-pot wet-chemical reduction approach to synthesize core-shell motif PtPdRhRuCu mesoporous nanospheres (PtPdRhRuCu MMNs) using a diblock copolymer as the soft template. The PtPdRhRuCu MMNs feature adjustable compositions and exposed porous structures rich in highly entropic alloy sites. The formation processes of the mesoporous structures and the reduction and growth kinetics of different metal precursors of PtPdRhRuCu MMNs are revealed. The PtPdRhRuCu MMNs exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 10, 13, and 28 mV at a current density of 10 mA cm-2 in alkaline (1.0 M KOH), acidic (0.5 M H2SO4), and neutral (1.0 M phosphate buffer solution (PBS)) electrolytes, respectively. The accelerated kinetics of the HER in PtPdRhRuCu MMNs are derived from multiple compositions with synergistic interactions among various metal sites and mesoporous structures with excellent mass/electron transportation characteristics.
Collapse
Affiliation(s)
- Yunqing Kang
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ovidiu Cretu
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Kikkawa
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Kimoto
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hiroki Nara
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hiroki Kawamoto
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki, 312-0033, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
4
|
Zhang C, Lai Q, Chen W, Zhang Y, Mo L, Liu Z. Three-Dimensional Electrochemical Sensors for Food Safety Applications. BIOSENSORS 2023; 13:bios13050529. [PMID: 37232890 DOI: 10.3390/bios13050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Considering the increasing concern for food safety, electrochemical methods for detecting specific ingredients in the food are currently the most efficient method due to their low cost, fast response signal, high sensitivity, and ease of use. The detection efficiency of electrochemical sensors is determined by the electrode materials' electrochemical characteristics. Among them, three-dimensional (3D) electrodes have unique advantages in electronic transfer, adsorption capacity and exposure of active sites for energy storage, novel materials, and electrochemical sensing. Therefore, this review begins by outlining the benefits and drawbacks of 3D electrodes compared to other materials before going into more detail about how 3D materials are synthesized. Next, different types of 3D electrodes are outlined together with common modification techniques for enhancing electrochemical performance. After this, a demonstration of 3D electrochemical sensors for food safety applications, such as detecting components, additives, emerging pollutants, and bacteria in food, was given. Finally, improvement measures and development directions of electrodes with 3D electrochemical sensors are discussed. We think that this review will help with the creation of new 3D electrodes and offer fresh perspectives on how to achieve extremely sensitive electrochemical detection in the area of food safety.
Collapse
Affiliation(s)
- Chi Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Qingteng Lai
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yanke Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Long Mo
- Department of Cardiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
6
|
Su Z, Chen T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005354. [PMID: 33733551 DOI: 10.1002/smll.202005354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Active sites (intrinsic activity, quantity, and distribution), electron transfer, and mass diffusion are three important factors affecting the performance of electrocatalysts. Composed of highly active components which are built into various network structures, porous noble metal is an inherently promising electrocatalysts. In recent years, great efforts have been made to explore new efficient synthesis methods and establish structural-performance relationships in the field of porous noble metal electrocatalysis. In this review, the very recent progress in strategies for preparing porous noble metal, including innovation and deeper understanding of traditional methods is summarized. A discussion of relationship between porous noble metal structure and electrocatalytic performance, such as accessibility of active sites, connectivity of skeleton structures, channels dimensions, and hierarchical structures, is provided.
Collapse
Affiliation(s)
- Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
7
|
Yin S, Liu S, Zhang H, Jiao S, Xu Y, Wang Z, Li X, Wang L, Wang H. Engineering One-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20233-20239. [PMID: 33884861 DOI: 10.1021/acsami.1c04619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing one-dimensional (1D) bimetallic nanomaterials is of great significance for electrochemical nitrogen fixation. Inspired by this, 1D AuPd nanospikes (AuPd NSs) composed with internal Au nanowire and external Pd nanohumps were fabricated by a flexible low-temperature wet-chemical method. Benefiting from the excellent electron transport efficiency of the 1D material and the accessible surface area provided by the unique nanospike-like structure, AuPd NSs exhibit outstanding nitrogen reduction reaction performance with an NH3 yield rate of 16.9 μg h-1 mg-1cat. and a Faradaic efficiency of 15.9% at -0.3 V under 0.1 M Na2SO4. This work not only provides an effective electrocatalyst for nitrogen fixation technology, but also presents a flexible method for the controlled synthesis of spike-like nanomaterials.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Chamorro-Coral W, Caillard A, Brault P, Baranton S, Coutanceau C. Binary and ternary Pt-based clusters grown in a plasma multimagnetron-based gas aggregation source: electrocatalytic evaluation towards glycerol oxidation. NANOSCALE ADVANCES 2021; 3:1730-1740. [PMID: 36132561 PMCID: PMC9418899 DOI: 10.1039/d0na01009j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 06/15/2023]
Abstract
Platinum (Pt), platinum-bismuth (PtBi), platinum-copper (PtCu) and platinum-bismuth-copper (PtCuBi) clusters were grown in a gas aggregation source (GAS) equipped with three in-plane plasma magnetrons located in a single region of the gas aggregation zone. The X-ray diffraction results have shown that PtCu clusters form alloys as the decrease of the lattice parameter occurs when the Cu atomic content increases. PtBi clusters do not form alloys, but the presence of secondary Bi oxide phases was detected. Scanning transmission electron microscope mapping images revealed that simultaneously adding Bi and Cu to Pt leads to PtCu alloyed clusters decorated with Bi or CuBi species on the surface. The electrochemical results indicated that the shell might be composed of a metastable CuBi phase. Electrochemical measurements have shown that the addition of Bi or Cu to the Pt clusters enhances the catalytic activity for glycerol oxidation by decreasing the oxidation onset potential.
Collapse
Affiliation(s)
- W Chamorro-Coral
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), Université d'Orléans, CNRS 14 rue d'Issoudun BP6744 45067 Orléans cedex 2 France
| | - A Caillard
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), Université d'Orléans, CNRS 14 rue d'Issoudun BP6744 45067 Orléans cedex 2 France
| | - P Brault
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), Université d'Orléans, CNRS 14 rue d'Issoudun BP6744 45067 Orléans cedex 2 France
| | - S Baranton
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS 4 rue Michel Brunet TSA 51106 86073 Poitiers cedex 9 France
| | - C Coutanceau
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS 4 rue Michel Brunet TSA 51106 86073 Poitiers cedex 9 France
| |
Collapse
|
9
|
A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat Protoc 2020; 15:2980-3008. [PMID: 32839575 DOI: 10.1038/s41596-020-0359-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
High-surface-area mesoporous materials expose abundant functional sites for improved performance in applications such as gas storage/separation, catalysis, and sensing. Recently, soft templates composed of amphiphilic surfactants and block copolymers have been used to introduce mesoporosity in various materials, including metals, metal oxides and carbonaceous compounds. In particular, mesoporous metals are attractive in electrocatalysis because their porous networks expose numerous unsaturated atoms on high-index facets that are highly active in catalysis. In this protocol, we describe how to create mesoporous metal films composed of gold, palladium, or platinum using block copolymer micelle templates. The amphiphilic block copolymer micelles are the sacrificial templates and generate uniform structures with tunable pore sizes in electrodeposited metal films. The procedure describes the electrodeposition in detail, including parameters such as micelle diameters, deposition potentials, and deposition times to ensure reproducibility. The micelle diameters can be controlled by swelling the micelles with different solvent mixtures or by using block copolymer micelles with different molecular weights. The deposition potentials and deposition times allow further control of the mesoporous structure and its thickness, respectively. Procedures for example applications are included: glucose oxidation, ethanol oxidation and methanol oxidation reactions. The synthetic methods for preparation of mesoporous metal films will take ~4 h; the subsequent electrochemical tests will take ~5 h for glucose sensing and ~3 h for alcohol oxidation reaction.
Collapse
|
10
|
Artal R, Serrà A, Michler J, Philippe L, Gómez E. Electrodeposition of Mesoporous Ni-Rich Ni-Pt Films for Highly Efficient Methanol Oxidation. NANOMATERIALS 2020; 10:nano10081435. [PMID: 32717944 PMCID: PMC7466700 DOI: 10.3390/nano10081435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The use of soft templates for the electrosynthesis of mesoporous materials has shown tremendous potential in energy and environmental domains. Among all the approaches that have been featured in the literature, block copolymer-templated electrodeposition had robustness and a simple method, but it practically cannot be used for the synthesis of mesoporous materials not based on Pt or Au. Nonetheless, extending and understanding the possibilities and limitations of block copolymer-templated electrodeposition to other materials and substrates is still challenging. Herein, a critical analysis of the role of the solution’s primary electroactive components and the applied potential were performed in order to understand their influences on the mesostructure of Ni-rich Ni-Pt mesoporous films. Among all the components, tetrahydrofuran and a platinum (IV) complex were shown to be crucial for the formation of a truly 3D mesoporous network. The electrosynthesized well-ordered mesoporous Ni-rich Ni-Pt deposits exhibit excellent electrocatalytic performance for methanol oxidation in alkaline conditions, improved stability and durability after 1000 cycles, and minimal CO poisoning.
Collapse
Affiliation(s)
- Raül Artal
- Thin Films and Nanostructures Electrodeposition Group (GE-CPN), Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain; (R.A.); (E.G.)
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; (J.M.); (L.P.)
| | - Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; (J.M.); (L.P.)
- Correspondence:
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; (J.M.); (L.P.)
| | - Laëtitia Philippe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; (J.M.); (L.P.)
| | - Elvira Gómez
- Thin Films and Nanostructures Electrodeposition Group (GE-CPN), Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain; (R.A.); (E.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
11
|
Yin S, Xu Y, Liu S, Yu H, Wang Z, Li X, Wang L, Wang H. Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. NANOSCALE 2020; 12:14863-14869. [PMID: 32633743 DOI: 10.1039/d0nr02686g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of doped noble metal catalysts with nonmetal elements to improve the catalytic performance toward the oxygen reduction reaction (ORR) is significant for proton exchange membrane fuel cell technology. Here, we report a one-pot for dual-nonmetal-doping strategy for the synthesis of S and P-co-doped mesoporous PtPd nanocages (PtPdSP mNCs) by using pre-synthesized mesoporous PtPd nanocages (PtPd mNCs) as the precursor and triphenylphosphine sulphide as both S and P sources. Benefitting from the combined advantages of metal-nonmetal incorporation, hollow cavity and surface porosity, the resultant quaternary PtPdSP mNCs exhibit outstanding ORR activity and long-term stability. This research work provides a good strategy for the doping of two or more selected nonmetallic elements into metallic nanocrystals with a controllable structure and composition.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
13
|
Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Mikrochim Acta 2019; 186:664. [DOI: 10.1007/s00604-019-3772-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 11/24/2022]
|