1
|
Peng J, Wang A, Liu Y, Chen F, Tang G, Zhao Y. Selective Functionalization of White Phosphorus with Alkyl Bromides under Photocatalytic Conditions: A Chlorine-Free Protocol to Dialkyl and Trialkyl Phosphine Oxides. Org Lett 2024; 26:9316-9321. [PMID: 39445636 DOI: 10.1021/acs.orglett.4c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A novel and efficient method for the direct selective alkylation of white phosphorus (P4) with alkyl bromides has been developed, utilizing 4DPAIPN as the photocatalyst and Hantzsch ester as the reductant. This method facilitates the synthesis of structurally diverse dialkyl phosphine oxides in good yields, offering a streamlined alternative to the traditional stepwise approach of chlorinating P4 with Cl2 and subsequently displacing the chlorine atom. Noteworthy features of this reaction include excellent product selectivity, remarkable functional group tolerance, and a broad substrate scope. Additionally, this method is effective for the synthesis of trialkyl phosphine oxides.
Collapse
Affiliation(s)
- Jialiang Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Fushan Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
2
|
Jing B, Zhu C, Song H, Li J, Cui C. Ytterbium(II) Complex-Catalyzed Selective Single and Double Hydrophosphination of 1,3-Enynes. Chemistry 2024; 30:e202401234. [PMID: 38712548 DOI: 10.1002/chem.202401234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
1,3-Enynes with conjugated alkene and alkyne moieties are attractive building blocks in synthetic chemistry. However, neither 4,1-hydrophosphination nor dihydrophosphination of 1,3-enynes has been reported. In this paper, the divalent ytterbium and calcium amide complexes supported by silaimine-functionalized cyclopentadienyl ligands (C5Me4-Si(L)=NR) were developed, which successfully catalyzed the efficient single and double hydrophosphination of 1,3-enynes with diarylphosphines. The hydrophosphination reactions selectively produced homoallenyl phosphines and (E)-propenylene diphosphines, respectively. This work demonstrated the potential of hemilabile silaimine-Cp ligands in the supporting the efficient and selective rare- and alkaline-earth catalysts.
Collapse
Affiliation(s)
- Bing Jing
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Cheng Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Duneş G, Chapple PM, Kahlal S, Roisnel T, Carpentier JF, Saillard JY, Sarazin Y. Barium phosphidoboranes and related calcium complexes. Dalton Trans 2024; 53:6892-6905. [PMID: 38567539 DOI: 10.1039/d4dt00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The attempted synthesis of [{Carb}BaPPh2] (1) showed this barium-phosphide and its thf adducts, 1·thf and 1·(thf)2, to be unstable in solution. Our strategy to circumvent the fragility of these compounds involved the use of phosphinoboranes HPPh2·BH3 and HPPh2·B(C6F5)3 instead of HPPh2. This allowed for the synthesis of [{Carb}Ae{PPh2·BH3}] (Ae = Ba, 2; Ca, 3), [{Carb}Ca{(H3B)2PPh2}·(thf)] (4), [{Carb}Ba{PPh2·B(C6F5)3}] (5), [{Carb}Ba{O(B(C6F5)3)CH2CH2CH2CH2PPh2}·thf] (6), [Ba{O(B(C6F5)3)CH2CH2CH2CH2PPh2}2·(thf)1.5] (7) and [Ba{PPh2·B(C6F5)3}2·(thp)2] (8) that were characterised by multinuclear NMR spectroscopy (thp = tetrahydropyran). The molecular structures of 4, 6 and 8 were validated by X-ray diffraction crystallography, which revealed the presence of Ba⋯F stabilizing interactions (ca. 9 kcal mol-1) in the fluorine-containing compounds. Compounds 6 and 7 were obtained upon ring-opening of thf by their respective precursors, 5 and the in situ prepared [Ba{PPh2·B(C6F5)3}2]n. By contrast, thp does not undergo ring-opening under the same conditions but affords clean formation of 8. DFT analysis did not highlight any specific weakness of the Ba-P bond in 1·(thf)2. The instability of this compound is instead thought to stem from the high energy of its HOMO, which contains the non-conjugated P lone pair and features significant nucleophilic reactivity.
Collapse
Affiliation(s)
- Gabriel Duneş
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France.
| | | | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France.
| | | | | | | | - Yann Sarazin
- Univ Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France.
| |
Collapse
|
4
|
Mondal S, Sarkar S, Mandal C, Mallick D, Mukherjee D. Fluorenyl-tethered N-heterocyclic carbene (NHC): an exclusive C-donor ligand for heteroleptic calcium and strontium chemistry. Chem Commun (Camb) 2024; 60:4553-4556. [PMID: 38568715 DOI: 10.1039/d4cc00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Exclusive C-donating ligands are rarely used with kinetically labile heavier alkaline earths (Ca, Sr, Ba). We report herein the aptitude of a combination of NHC with fluorenyl connected by a flexible -(CH2)2- linker as a ligand support for heteroleptic Ca- and Sr-N(SiMe3)2 and iodides. The Ca-N(SiMe3)2 complex even catalyzes the intramolecular hydroamination of aminoalkenes to showcase the effectiveness of this ligand framework.
Collapse
Affiliation(s)
- Sumana Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Subham Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
5
|
Lau S, Mahon MF, Webster RL. Synthesis and Characterization of a Terminal Iron(II)-PH 2 Complex and a Series of Iron(II)-PH 3 Complexes. Inorg Chem 2024; 63:6998-7006. [PMID: 38563561 PMCID: PMC11022175 DOI: 10.1021/acs.inorgchem.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Reported is the reaction of a series of iron(II) bisphosphine complexes with PH3 in the presence of NaBArF4 [where BArF4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate]. The iron(II) bisphosphine reagents bear two chlorides or a hydride and a chloride motif. We have isolated six different cationic terminal-bound PH3 complexes and undertaken rigorous characterization by NMR spectroscopy, single crystal X-ray diffraction, and mass spectrometry, where the PH3 often remains intact during the ionization process. Unusual bis- and tris-PH3 complexes are among the compounds isolated. Changing the monophosphine from PH3 to PMe3 results in the formation of an unusual Fe7 cluster, but with no PMe3 being ligated. Finally, by using an iron(0) source, we have provided a rare example of a terminally bound iron-PH2 complex.
Collapse
Affiliation(s)
- Samantha Lau
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Lyubov DM, Zakaria H, Nelyubina YV, Aysin RR, Bukalov SS, Trifonov AA. Ca(II) and Yb(II) complexes featuring M(C≡C) 4 structural motif: enforced proximity or genuine η 2 -bonding? Chemistry 2024; 30:e202303533. [PMID: 38070175 DOI: 10.1002/chem.202303533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/12/2024]
Abstract
Bis(carbazolide) complexes M[3,6-tBu2 -1,8-(RC≡C)2 Carb]2 (THF)n (R=SiMe3 , n=0, M=Ca, Yb; R=Ph, n=1, M=Ca, Yb; n=0, M=Yb) were synthesized through transamination reaction of M[N(SiMe3 )2 ]2 (THF)2 with two molar equivalents of carbazoles. The complexes feature M(η2 -C≡C)4 structural motif composed of M(II) ions encapsulated by four acetylene fragments due to atypical for alkaline- and rare-earth metals η2 -interactions with triple C≡C bond. This interaction is evidenced experimentally by X-ray diffraction, Raman spectroscopy in the solid state and by NMR-spectroscopy in the solution. According to QTAIM analysis there are 4 bond critical points (3;-1) between the metal atom and each of the triple bonds, which are connected by a strongly curved, almost T-shaped bond pathway.
Collapse
Affiliation(s)
- Dmitry M Lyubov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
| | - Hamza Zakaria
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
- N. I. Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Rinat R Aysin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Sergey S Bukalov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Alexander A Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| |
Collapse
|
7
|
Lapshin IV, Cherkasov AV, Trifonov AA. Heteroleptic Bis(amido) Ca(II) and Yb(II) NHC Pincer Complexes: Synthesis, Characterization, and Catalytic Activity in Intermolecular Hydrofunctionalization of C═C Bonds. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ivan V. Lapshin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Alexander A. Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, GSP-1, Russia
| |
Collapse
|
8
|
Obi AD, Freeman LA, Coates SJ, Alexis AJH, Frey NC, Dickie DA, Webster CE, Gilliard RJ. Carbene–Calcium Silylamides and Amidoboranes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Lucas A. Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Samuel J. Coates
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Andrew J. H. Alexis
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Nathan C. Frey
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, United States
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
9
|
Lau S, Hood TM, Webster RL. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination. ACS Catal 2022; 12:10939-10949. [PMID: 36082053 PMCID: PMC9442583 DOI: 10.1021/acscatal.2c03144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
![]()
In this Perspective, we discuss what we perceive to be
the continued
challenges faced in catalytic hydrophosphination chemistry. Currently
the literature is dominated by catalysts, many of which are highly
effective, that generate the same phosphorus architectures, e.g.,
anti-Markovnikov products from the reaction of activated alkenes and
alkynes with diarylphosphines. We highlight the state of the art in
stereoselective hydrophosphination and the scope and limitations of
chemoselective hydrophosphination with primary phosphines and PH3. We also highlight the progress in the chemistry of the heavier
homologues. In general, we have tried to emphasize what is missing
from our hydrophosphination armament, with the aim of guiding future
research targets.
Collapse
Affiliation(s)
- Samantha Lau
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Thomas M. Hood
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Ruth L. Webster
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
10
|
Geeson MB, Tanaka K, Taakili R, Benhida R, Cummins CC. Photochemical Alkene Hydrophosphination with Bis(trichlorosilyl)phosphine. J Am Chem Soc 2022; 144:14452-14457. [PMID: 35926231 DOI: 10.1021/jacs.2c05248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bis(trichlorosilyl)phosphine (HP(SiCl3)2, 1) was prepared from [TBA][P(SiCl3)2] ([TBA]2, TBA = tetra-n-butylammonium) and triflic acid in 36% yield. Phosphine 1 is an efficient reagent for hydrophosphination of unactivated terminal olefins under UV irradiation (15-60 min) and gives rise to bis(trichlorosilyl)alkylphosphines (RP(SiCl3)2, R = (CH2)5CH3, 88%; (CH2)7CH3, 98%; (CH2)2C(CH3)3, 76%; CH2Cy, 93%; (CH2)2Cy, 95%; CH2CH(CH3)(CH2)2CH3, 82%; (CH2)3O(CH2)3CH3, 95%; (CH2)3Cl, 83%; (CH2)2SiMe3, 92%; (CH2)5C(H)CH2, 44%) in excellent yields. The products require no further purification beyond filtration and removal of volatile material under reduced pressure. The P-Si bonds of prototypical products RP(SiCl3)2 (R = -(CH2)5CH3, -(CH2)7CH3) are readily functionalized to give further phosphorus-containing products: H3C(CH2)7PCl2 (56%), [H3C(CH2)5P(CH2Ph)3]Br (84%), H3C(CH2)7PH2 (61%), H3C(CH2)5P(O)(H)(OH) (81%), and H3C(CH2)5P(O)(OH)2 (55%). Experimental mechanistic investigations, accompanied by quantum chemical calculations, point toward a radical-chain mechanism. Phosphine 1 enables the fast, high-yielding, and atom-efficient preparation of compounds that contain phosphorus-carbon bonds in procedures that bypass white phosphorus (P4), a toxic and high-energy intermediate of the phosphorus industry.
Collapse
Affiliation(s)
- Michael B Geeson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keita Tanaka
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachid Taakili
- Department of Chemical and Biochemical Sciences - Green Process Engineering, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco.,Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice 06103, France
| | - Rachid Benhida
- Department of Chemical and Biochemical Sciences - Green Process Engineering, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco.,Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice 06103, France
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Lapshin IV, Cherkasov AV, Lyssenko KA, Fukin GK, Trifonov AA. N-Heterocyclic Carbene-Coordinated M(II) (M = Yb, Sm, Ca) Bisamides: Expanding the Limits of Intermolecular Alkene Hydrophosphination. Inorg Chem 2022; 61:9147-9161. [PMID: 35679149 DOI: 10.1021/acs.inorgchem.2c00698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of NHC-stabilized amido compounds (NHC)nM[N(SiMe3)2]2 (M = Yb(II), Sm(II), Ca(II); n = 1, 2) showed remarkable catalytic efficiency in addition of PhPH2 and PH3 to alkenes under mild conditions and low catalyst loading. The effect of σ-donor capacity of NHCs on catalytic activity in hydrophosphination of styrene with PhPH2 and PH3 was revealed. For the series of three-coordinate complexes 1-4M, a tendency to increase the catalytic activity with growth of σ-donating strength of the carbene ligand was clearly demonstrated. The complex (NHC)2Sm[N(SiMe3)2]2 (NHC = 1,3-diisopropyl-2H-imidazole-2-ylidene) (5Sm) proved to be the most efficient catalyst, which enabled hardly realizable transformations such as PhPH2 addition across internal C═C bonds of norbornene and cis- and trans-stilbenes, providing the highest reaction rate for addition of PH3 to styrene. Excellent regio- and chemoselectivities of alkylation of PH3 with styrenes allow for a selective and good-yield synthesis of desired organophosphines─either primary, secondary, or tertiary. Stepwise alkylation of PH3 with various substituted styrenes can be efficiently applied as an approach to nonsymmetric secondary phosphines. The rate equation of the addition of styrene to PH3 promoted by 5Sm was found: rate = k[styrene]1[5Sm]1.
Collapse
Affiliation(s)
- Ivan V Lapshin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Street, GSP-445, Nizhny Novgorod 630950, Russia
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Street, GSP-445, Nizhny Novgorod 630950, Russia
| | - Konstantin A Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Street, Moscow 119334, Russia.,Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia
| | - Georgy K Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Street, GSP-445, Nizhny Novgorod 630950, Russia
| | - Alexander A Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Street, GSP-445, Nizhny Novgorod 630950, Russia.,Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Street, Moscow 119334, Russia
| |
Collapse
|
12
|
Synthesis, structure, and properties of the Sc chloride complex coordinated by the tridentate bis(phenolate)-tethered NHC ligand. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Belli RG, Yang J, Bahena EN, McDonald R, Rosenberg L. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Erick Nuñez Bahena
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
14
|
Schwamm RJ, Coles MP. Catalytic Hydrophosphination of Isocyanates by Molecular Antimony Phosphanides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryan J. Schwamm
- Victoria University of Wellington Faculty of Science School of Chemical and Physical Sciences NEW ZEALAND
| | - Martyn P Coles
- Victoria University of Wellington School of Chemical and Physical Sciences PO Box 600 6140 Wellington NEW ZEALAND
| |
Collapse
|
15
|
Schwarz N, Sun X, Yadav R, Köppe R, Simler T, Roesky PW. Application of the Redox-Transmetalation Procedure to Access Divalent Lanthanide and Alkaline-Earth NHC Complexes*. Chemistry 2021; 27:12857-12865. [PMID: 34165229 PMCID: PMC8518399 DOI: 10.1002/chem.202101923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/10/2022]
Abstract
Divalent lanthanide and alkaline-earth complexes supported by N-heterocyclic carbene (NHC) ligands have been accessed by redox-transmetalation between air-stable NHC-AgI complexes and the corresponding metals. By using the small ligand 1,3-dimethylimidazol-2-ylidene (IMe), two series of isostructural complexes were obtained: the tetra-NHC complexes [LnI2 (IMe)4 ] (Ln=Eu and Sm) and the bis-NHC complexes [MI2 (IMe)2 (THF)2 ] (M=Yb, Ca and Sr). In the former, distortions in the NHC coordination were found to originate from intermolecular repulsions in the solid state. Application of the redox-transmetalation strategy with the bulkier 1,3-dimesitylimidazol-2-ylidene (IMes) ligand yielded [SrI2 (IMes)(THF)3 ], while using a similar procedure with Ca metal led to [CaI2 (THF)4 ] and uncoordinated IMes. DFT calculations were performed to rationalise the selective formation of the bis-NHC adduct in [SrI2 (IMe)2 (THF)2 ] and the tetra-NHC adduct in [SmI2 (IMe)4 ]. Since the results in the gas phase point towards preferential formation of the tetra-NHC complexes for both metal centres, the differences between both arrangements are a result of solid-state effects such as slightly different packing forces.
Collapse
Affiliation(s)
- Noah Schwarz
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Xiaofei Sun
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Ravi Yadav
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Ralf Köppe
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Thomas Simler
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
- Laboratoire de Chimie Moléculaire (LCM) CNRS, École PolytechniqueInstitut Polytechnique de Paris91120PalaiseauFrance
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|
16
|
Pan Z, Gao D, Zhang C, Guo L, Li J, Cui C. Synthesis and Reactivity of N-heterocyclic Carbene Stabilized Lanthanide(II) Bis(amido) Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zexiong Pan
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Dongjing Gao
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunqi Zhang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
17
|
Abstract
Magnetic shielding depends on molecular structure and noncovalent interactions. This study shows that it is also measurably dependent on the electric field generated by surrounding molecules. This effect has been observed explicitly for 31P nucleus using the adduct under field approach. The results obtained indicate that the field strength experienced by molecules in crystals consisting of molecules with large dipole moments is similar to that in polar solvents. Therefore, magnetic shielding should explicitly depend on solvent polarity. It is important to note that this effect cannot be reproduced correctly within the polarizable continuum model approach.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Shenderovich IG. Experimentally Established Benchmark Calculations of
31
P NMR Quantities. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/cmtd.202000033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilya G. Shenderovich
- Ilya G. Shenderovich Institute of Organic Chemistry University of Regensburg Universitaetstrasse 31 93053 Regensburg Germany
| |
Collapse
|