1
|
Liu Y, Unno M. Development Story of Janus Siloxanes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Thiolated Janus Silsesquioxane Tetrapod: New Precursors for Functional Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227680. [PMID: 36431781 PMCID: PMC9696078 DOI: 10.3390/molecules27227680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Herein, we report synthetic strategies for the development of a bifunctional Janus T4 tetrapod (Janus ring), in which the orthogonal silsesquioxane and organic faces are independently functionalized. An all-cis T4 tetrasilanolate was functionalized to introduce thiol moieties on the silsesquioxane face and naphthyl groups on the organic face to introduce luminescent and self-organization properties. The stepwise synthesis conditions required to prepare such perfectly defined oligomers via a suite of well-defined intermediates and to avoid polymerization or reactions over all eight positions of the tetrapod are explored via 29Si, 13C and 1H NMR, FTIR and TOF-ESI mass spectroscopy. To the best of our knowledge, this is one of the few reports of Janus T4 tetrapods, with different functional groups located on both faces of the molecule, thus expanding the potential range of applications for these versatile precursors.
Collapse
|
3
|
Liu Y, Chaiprasert T, Ouali A, Unno M. Well-defined cyclic silanol derivatives. Dalton Trans 2022; 51:4227-4245. [PMID: 35191910 DOI: 10.1039/d1dt04270j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cyclic silanol derivatives (CSDs), possessing siloxane rings consisting of T-unit silicon and oxygen atoms, are considered efficient precursors for the preparation of versatile well-defined building blocks of hybrid materials such as cyclic, cage- or ladder-type SQs. This review provides an outline of the main synthetic routes to numerous stereoregular CSDs with different sizes of siloxane rings since the first example of CSDs reported by Brown et al. in 1965. The typical reaction conditions and chemical shifts of 29Si NMR of all mentioned CSDs in this review are summarized in tables and schemes to recapitulate the state of the art. The synthesis of all-cis-cyclotetrasiloxanes (T4), the most investigated CSDs, and their functionalization by different organic reactions to access various all-cis-T4 with functional groups are methodically presented. Moreover, the potential of CSDs in multiple application fields is discussed to show the possible research directions of this family of compounds in the future.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| | - Thanawat Chaiprasert
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road Pathum Wan Wang Mai, Bangkok 10330, Thailand
| | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM, 1919 route de Mende, Montpellier 34293 Cedex 5, France
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| |
Collapse
|
4
|
Władyczyn A, Gągor A, Ślepokura K, John Ł. Hydroxyalkyl-substituted double-decker silsesquioxanes: effective separation of cis and trans isomers. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00577h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A procedure to sequentially crystallize the two isomers of hydroxyalkyl-substituted double-decker silsesquioxanes from one another, which may result in the preparation of new materials and polymers with well-defined properties, is reported.
Collapse
Affiliation(s)
- Anna Władyczyn
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, 50-422 Wrocław, Poland
| | - Katarzyna Ślepokura
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Łukasz John
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Rzonsowska M, Mituła K, Duszczak J, Kasperkowiak M, Januszewski R, Grześkiewicz A, Kubicki M, Głowacka D, Dudziec B. Unexpected and frustrating transformations of double-decker silsesquioxanes. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01363g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper outlines an unexpected type of intramolecular transformation of DDSQ during hydrolytic condensation and surprising catalytic reactivity in silylative coupling.
Collapse
Affiliation(s)
- Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Mituła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Julia Duszczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Rafał Januszewski
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Chemistry and Technology of Silicon Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Anita Grześkiewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Daria Głowacka
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
6
|
Petrova IM, Lyakhovetsky YI, Ikonnikov NS, Makarova NN. The Influence of HCl Concentration on the Rate of the Hydrolysis-Condensation Reaction of Phenyltrichlorosilane and the Yield of (Tetrahydroxy)(Tetraphenyl)Cyclotetrasiloxanes, Synthesis of All Its Geometrical Isomers and Thermal Self-Condensation of Them under "Pseudo"-Equilibrium Conditions. Molecules 2021; 26:molecules26144383. [PMID: 34299658 PMCID: PMC8306532 DOI: 10.3390/molecules26144383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
The rate of hydrolysis–condensation reaction of phenyltrichlorosilane in water-acetone solutions and the product yields were shown to significantly depend on the concentration of HCl (CHCl) in the solutions. The main product of the reaction was all-cis-(tetrahydroxy)(tetraphenyl)cyclotetrasiloxane. This was different from the earlier published results of analogous reactions of m-tolylSiCl3, m-ClPhSiCl3, and α-naphtylSiCl, in which some products of other types were formed. For example, trans-1,1,3,3-tetrahydroxy-1,3-di-α-naphtyldisiloxane was obtained in the case of α-naphtylSiCl3. All-cis-(tetrahydroxy)(tetraphenyl)cyclotetrasiloxane was treated in acetone with HCl to give the other three geometric isomers (cis-cis-trans-, cis-trans-, and all-trans-). The thermal self-condensation of these four isomers under “pseudo”-equilibrium conditions (under atmospheric pressure) was investigated in different solvents, in quartz or molybdenum glass flasks. The compositions of the products were monitored by APCI-MS and 29Si NMR spectroscopy. It was shown that all-cis- and cis-cis-trans-isomers in toluene or anisole mostly gave the cage-like Ph-T8,10,12,14 and uncompleted cage-like Ph-T10,12OSi(HO)Ph compounds. In contrast to these two isomers, the cis-trans–isomer in toluene mainly formed dimers with the loss of one or two molecules of water. However, in acetonitrile, significant amounts of Ph-T10,12 and Ph-T10,12OSi(HO)Ph species were formed along with the dimers. All-trans-isomer did not enter into the reaction at all.
Collapse
|
7
|
Chaiprasert T, Liu Y, Takeda N, Unno M. Vinyl-Functionalized Janus Ring Siloxane: Potential Precursors to Hybrid Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2014. [PMID: 33923699 PMCID: PMC8073502 DOI: 10.3390/ma14082014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
A vinyl-functionalized all-cis-tetrasiloxycyclotetrasiloxane [ViSi(OSiMe2H)O]4 (Vi = vinyl group) Janus precursor was prepared from potassium cyclotetrasiloxane silanolate. The Janus precursor was selectively modified at its dimethylhydrosilyl groups [-SiMe2H] via the Piers-Rubinsztajn reaction to obtain a family of new tetravinyl-substituted Janus rings [ViSi(OR')O]4 containing various functional groups in moderate yields. Remarkably, the tetravinyl groups on the structure remained intact after modification by the Piers-Rubinsztajn reaction. Since these synthesized compounds possess multiple functional groups (up to eight per molecule), they are potential precursors for advanced hybrid organic-inorganic functional materials.
Collapse
Affiliation(s)
| | | | | | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan; (T.C.); (Y.L.); (N.T.)
| |
Collapse
|
8
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Chaiprasert T, Liu Y, Takeda N, Unno M. Janus ring siloxane: a versatile precursor of the extended Janus ring and tricyclic laddersiloxanes. Dalton Trans 2020; 49:13533-13537. [PMID: 32996968 DOI: 10.1039/d0dt03045g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All-cis-tetrasiloxycyclotetrasiloxanes (Janus ring siloxanes) were facilely prepared from all-cis-cyclotetrasiloxanetetraol or sodium cyclotetrasiloxane silanolates. Moreover, we demonstrated the synthesis of extended Janus rings, [RSi(OR')O]4, containing various functional groups, via the Piers-Rubinsztajn reaction using a Janus ring siloxane as a precursor. Remarkably, we discovered the formation of an unexpected all-cis tricyclic laddersiloxane as a by-product. These synthesized compounds can be potential monomers of well-defined cage silsesquioxanes, Janus-type nanomaterials, and porous materials.
Collapse
Affiliation(s)
- Thanawat Chaiprasert
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan.
| |
Collapse
|
10
|
Janeta M, Lis T, Szafert S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro-Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low-Pressure CO 2. Chemistry 2020; 26:13686-13697. [PMID: 33463802 DOI: 10.1002/chem.202002996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Indexed: 01/13/2023]
Abstract
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
11
|
Formation of Bifunctional Octasilsesquioxanes via Silylative Coupling and Cross-Metathesis Reaction. MATERIALS 2020; 13:ma13183966. [PMID: 32911628 PMCID: PMC7557879 DOI: 10.3390/ma13183966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022]
Abstract
Bifunctional silsesquioxanes create an attractive group of compounds with a wide range of potential applications, and recently they have gained much interest. They are known to be obtained mainly via hydrosilylation, but we disclose novel synthetic protocols based on different but complementary reactions, i.e., cross-metathesis (CM) and silylative coupling (SC). A series of cubic T8 type silsesquioxane derivatives with a broad scope of styryl substituents were synthesized in a one-pot procedure and characterized by spectroscopic and spectrometric methods. All of the new compounds can be obtained in a one-pot manner, which has an attractive impact on the synthetic procedure, as it is economic in terms of the isolation of intermediate products. Additionally, the methodology disclosed here enables the (E)-stereoselective introduction of styrenes derivative to the cubic T8 type core. The presented compounds can be interesting precursors for a further functionalization that may significantly increase the possibility of their application in the design and synthesis of new functional materials.
Collapse
|
12
|
Grzelak M, Marciniec B. Synthesis of Bifunctional Silsesquioxanes and Spherosilicates with Organogermyl Functionalities. Chem Asian J 2020; 15:2437-2441. [PMID: 32538545 DOI: 10.1002/asia.202000596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Indexed: 11/09/2022]
Abstract
In this paper we present the synthesis of mixed bifunctional compounds of T8 H8 silsesquioxane and spherosilicate (HSiMe2 O)8 Si8 O12 derivatives via platinum-catalyzed hydrosilylation of alkenylgermanes and olefins. To the best of our knowledge, this is the first literature example of bifunctional compounds with organogermyl functionalities. Eleven mixed systems with a variety of substituents (Si-H, alkyl, germyl, epoxy, and hydroxy) were prepared and fully characterized by NMR spectroscopy. Additionally, our research includes a real-time FT-IR study of the synthesis of these bifunctional compounds of the general formula (R)8-m (GeR'3 (CH2 )n+2 R)m Si8 O12 . and (R''(CH2 )2 R)8-m (GeR'3 (CH2 )2 R)m Si8 O12 where m∼4.
Collapse
Affiliation(s)
- Magdalena Grzelak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Bogdan Marciniec
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
13
|
Synthesis and Characterization of Unsymmetrical Double-Decker Siloxane (Basket Cage). Molecules 2019; 24:molecules24234252. [PMID: 31766625 PMCID: PMC6930635 DOI: 10.3390/molecules24234252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
The one-pot synthesis of an unsymmetrical double-decker siloxane with a novel structure via the reaction of double-decker tetrasodiumsilanolate with 1 equiv. of dichlorotetraphenyldisiloxane in the presence of an acid is reported herein for the first time. The target compound bearing all phenyl substituents on the unsymmetrical siloxane structure was successfully obtained, as confirmed by 1H-NMR, 13C-NMR, 29Si-NMR, IR, MALDI-TOF, and X-ray crystallography analyses. Additionally, the thermal properties of the product were evaluated by TG/DTA and compared with those of other siloxane cage compounds.
Collapse
|