1
|
Yuan N, Ren Y, Gao T, Wang J, Li J. Effect of structure on sensing performance of nitro explosives with high sensitivity and mechanism of two Tb(III) coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124943. [PMID: 39146629 DOI: 10.1016/j.saa.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The use of a conjugate N-containing ligand resulted in the decreasing of structural dimensions from 2D network of [Tb(2-pyia)(Ac)(H2O)] (CP1) to 1D chain [Tb(2-pyia)(Ac)(IDP)] (CP2) (2-H2pyia = 5-(pyridin-2-ylmethoxy) isophthalic acid and IDP=imidazo[4,5-f]-[1,10] phenanthroline). Both of them exhibit the characteristic luminescence of Tb ions and could have high fluorescence sensing properties for cefixime and fluridine. The different sensing properties for nitro explosives are manifested as CP1 for nitrobenzene and CP2 for 4-nitrophenol due to the difference in structure. Furthermore, CP2 exhibits the ratiometric fluorescence sensing for Fe3+ ion with a low detection limit of 0.405 μM. The fluorescence sensing mechanism of the two Tb complexes for different analytes was investigated using experimental methods and theoretical calculations. CP1 was used for the detection of Flu residues in the actual system and better results were obtained. The work shows the introduction of the chelated ligand might affect the structural and sensing performance changes of coordination polymers.
Collapse
Affiliation(s)
- Nana Yuan
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yixia Ren
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Ting Gao
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jijiang Wang
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jinfeng Li
- College of Chemistry and Chemical Engineering, Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
2
|
Li YX, Chen X, Jiang ZY, Luan J, Guo F. Rational Design and Synthesis of Fe-Doped Co-Based Coordination Polymer Composite Photocatalysts for the Degradation of Norfloxacin and Ciprofloxacin. Inorg Chem 2024; 63:6514-6525. [PMID: 38547361 DOI: 10.1021/acs.inorgchem.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.
Collapse
Affiliation(s)
- Ye-Xia Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xin Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Zhi-Yang Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
3
|
Brakestad A, Jensen SR, Tantardini C, Pitteloud Q, Wind P, Užulis J, Gulans A, Hopmann KH, Frediani L. Scalar Relativistic Effects with Multiwavelets: Implementation and Benchmark. J Chem Theory Comput 2024; 20:728-737. [PMID: 38181377 PMCID: PMC10809714 DOI: 10.1021/acs.jctc.3c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
The importance of relativistic effects in quantum chemistry is widely recognized, not only for heavier elements but throughout the periodic table. At the same time, relativistic effects are strongest in the nuclear region, where the description of electrons through a linear combination of atomic orbitals becomes more challenging. Furthermore, the choice of basis sets for heavier elements is limited compared with lighter elements where precise basis sets are available. Thanks to the framework of multiresolution analysis, multiwavelets provide an appealing alternative to overcoming this challenge: they lead to robust error control and adaptive algorithms that automatically refine the basis set description until the desired precision is reached. This allows one to achieve a proper description of the nuclear region. In this work, we extended the multiwavelet-based code MRChem to the scalar zero-order regular approximation framework. We validated our implementation by comparing the total energies for a small set of elements and molecules. To confirm the validity of our implementation, we compared both against a radial numerical code for atoms and the plane-wave-based code EXCITING.
Collapse
Affiliation(s)
- Anders Brakestad
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Stig Rune Jensen
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Christian Tantardini
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Quentin Pitteloud
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Peter Wind
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Jānis Užulis
- Department
of Physics, University of Latvia, Jelgavas iela 3, Riga, Latvia 1004, Latvia
| | - Andris Gulans
- Department
of Physics, University of Latvia, Jelgavas iela 3, Riga, Latvia 1004, Latvia
| | | | - Luca Frediani
- Hylleraas
Centre for Quantum Molecular Sciences, UiT
The Arctic University of Norway, Tromsø 9037, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| |
Collapse
|
4
|
Dalsaniya MH, Upadhyay D, Jan Kurzydłowski K, Kurzydłowski D. High-pressure stabilization of open-shell bromine fluorides. Phys Chem Chem Phys 2024; 26:1762-1769. [PMID: 38165769 DOI: 10.1039/d3cp05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Halogen fluorides are textbook examples of how fundamental chemical concepts, such as molecular orbital theory or the valence-shell electron-repulsion (VSEPR) model, can be used to understand the geometry and properties of compounds. However, it is still an open question whether these notions are applicable to matter subject to high pressure (>1 GPa). In an attempt to gain insight into this phenomenon, we present a computational study on the phase transitions and reactivity of bromine fluorides at pressures of up to 100 GPa (≈106 atm). We predict that at a moderately high pressure of 15 GPa, the bonding preference in the Br/F system should change considerably with BrF3 becoming thermodynamically unstable and two novel compounds emerging as stable species: BrF2 and BrF6. Calculations indicate that both these compounds contain radical molecules while being non-metallic. We propose a synthetic route for obtaining BrF2 which does not require the use of highly reactive elemental fluorine. Finally, we show how molecular orbital diagrams and the VSEPR model can be used to explain the properties of compressed bromine fluorides.
Collapse
Affiliation(s)
- Madhavi H Dalsaniya
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland.
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-038 Warsaw, Poland.
| | - Deepak Upadhyay
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-038 Warsaw, Poland.
| | | | - Dominik Kurzydłowski
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-038 Warsaw, Poland.
| |
Collapse
|
5
|
Sargent CT, Metcalf DP, Glick ZL, Borca CH, Sherrill CD. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods. J Chem Phys 2023; 158:054112. [PMID: 36754814 DOI: 10.1063/5.0141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol-1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%.
Collapse
Affiliation(s)
- Caroline T Sargent
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Derek P Metcalf
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Carlos H Borca
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
6
|
Matsumoto K, Shima K, Sugimoto T, Inoue T, Hagiwara R. Generation of Elemental Fluorine through the Electrolysis of Copper Difluoride at Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuhiko Matsumoto
- Graduate School of Energy Science Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Keita Shima
- Graduate School of Energy Science Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Takuya Sugimoto
- Graduate School of Energy Science Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Takahiro Inoue
- Graduate School of Energy Science Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Rika Hagiwara
- Graduate School of Energy Science Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
7
|
Matsumoto K, Shima K, Sugimoto T, Inoue T, Hagiwara R. Generation of Elemental Fluorine through the Electrolysis of Copper Difluoride at Room Temperature. Angew Chem Int Ed Engl 2021; 60:7887-7892. [PMID: 33428321 DOI: 10.1002/anie.202016463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Indexed: 11/10/2022]
Abstract
The safe generation of F2 gas at room temperature by using simple cell configurations has been the "holy grail" of fluorine research for centuries. Thus, to address this issue, we report generation of F2 gas through the electrolysis of CuF2 in a CsF-2.45HF molten salt without the evolution of H2 gas. The CuF2 is selected through a series of thermodynamic and kinetic assessments of possible metal fluorides. Anode assessments on graphite and glass-like carbon demonstrate the effect of the absence of the anode during generation of F2 gas owing to stabilized operations at room temperature. Although the Ni anode dissolves during electrolysis in the conventional medium-temperature cell, herein, it facilitates stable electrolysis over 100 h, achieving an F2 gas purity of over 99 % with the potential to operate using one-compartment electrolysis. This work presents a safe and propitious method for the generation of high-purity F2 gas for small-scale lab and industrial applications.
Collapse
Affiliation(s)
- Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Keita Shima
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takuya Sugimoto
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takahiro Inoue
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rika Hagiwara
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Borca CH, Bakr BW, Burns LA, Sherrill CD. CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism. J Chem Phys 2019; 151:144103. [PMID: 31615262 DOI: 10.1063/1.5120520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present an algorithm to compute the lattice energies of molecular crystals based on the many-body cluster expansion. The required computations on dimers, trimers, etc., within the crystal are independent of each other, leading to a naturally parallel approach. The algorithm exploits the long-range three-dimensional periodic order of crystals to automatically detect and avoid redundant or unnecessary computations. For this purpose, Coulomb-matrix descriptors from machine learning applications are found to be efficient in determining whether two N-mers are identical. The algorithm is implemented as an open-source Python program, CrystaLattE, that uses some of the features of the Quantum Chemistry Common Driver and Databases library. CrystaLattE is initially interfaced with the quantum chemistry package Psi4. With CrystaLattE, we have applied the fast, dispersion-corrected Hartree-Fock method HF-3c to the lattice energy of crystalline benzene. Including all 73 symmetry-unique dimers and 7130 symmetry-unique trimers that can be formed from molecules within a 15 Å cutoff from a central reference monomer, HF-3c plus an Axilrod-Teller-Muto estimate of three-body dispersion exhibits an error of only -1.0 kJ mol-1 vs the estimated 0 K experimental lattice energy of -55.3 ± 2.2 kJ mol-1. The convergence of the HF-3c two- and three-body contributions to the lattice energy as a function of intermonomer distance is examined.
Collapse
Affiliation(s)
- Carlos H Borca
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Brandon W Bakr
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Lori A Burns
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|