1
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
2
|
da Silva Santos M, Medel R, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. Exposing the Oxygen-Centered Radical Character of the Tetraoxido Ruthenium(VIII) Cation [RuO 4 ] . Chemphyschem 2023; 24:e202300390. [PMID: 37589334 DOI: 10.1002/cphc.202300390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Robert Medel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Max Flach
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Olesya S Ablyasova
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|
3
|
Yan L, Yuan B, Qian C, Zhou S. Methane Activation by [AlFeO 3 ] + : the Hidden Spin Selectivity. Chemphyschem 2023:e202300603. [PMID: 37814927 DOI: 10.1002/cphc.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
The performance of heteronuclear cluster [AlFeO3 ]+ in activating methane has been explored by a combination of high-level quantum chemical calculations with gas-phase experiments. At room temperature, [AlFeO3 ]+ is a mixture of 7 [AlFeO3 ]+ and 5 [AlFeO3 ]+ , in which two states lead to different reactivity and chemoselectivity for methane activation. While hydrogen extracted from methane is the only product channel for the 7 [AlFeO3 ]+ /CH4 couple, 5 [AlFeO3 ]+ is able to convert this substrate to formaldehyde. In addition, the introduction of an external electric field may regulate the reactivity and product selectivity. The interesting doping effect of Fe and the associated electronic origins are discussed, which may guide one on the design of Fe-involved catalyst for methane conversion.
Collapse
Affiliation(s)
- Linghui Yan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - BoWei Yuan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| |
Collapse
|
4
|
Guo M, Zhou S, Sun X. Room-Temperature Conversion of Methane to Methanediol by [FeO 2] . J Phys Chem Lett 2023; 14:1633-1640. [PMID: 36752636 DOI: 10.1021/acs.jpclett.2c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inspired by the activities of P-450 enzyme and Rieske oxygenases in nature, in which the high-valent Fe-oxo complexes play a key role for oxidation of alkanes, the oxidation process of methane by the high-valent iron oxide cation [FeO2]+ has been explored by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously reported [FeO]+/CH4 and [Fe(O)OH]+/CH4 systems, which afford [FeOH]+ as the main product, the generation of Fe+ dominates the reaction of [FeO2]+ with CH4. Theoretical calculations suggest a novel "oxygen rebound" pathway for the liberation of methanediol. In particular, the inevitable valence increase of Fe prior to C-H activation is similar to the cytochrome P-450 mediated processes. To our best knowledge, this study provides the first example of methane activation by the high-valent Fe(V)-oxo species in the gas phase, which may thus bridge the gas-phase model and the condensed-phase biosystems.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University─Quzhou, Zheda Road No. 99, Quzhou 324000, China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
5
|
CUI S, QIN J, LIU W. Ultrafine Pt-doped SnO2 mesopore nanofibers-based gas sensor for enhanced acetone sensing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Catalytic Co-Conversion of CH 4 and CO 2 Mediated by Rhodium-Titanium Oxide Anions RhTiO 2. Angew Chem Int Ed Engl 2021; 60:13788-13792. [PMID: 33890352 PMCID: PMC8251526 DOI: 10.1002/anie.202103808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Catalytic co‐conversion of methane with carbon dioxide to produce syngas (2 H2+2 CO) involves complicated elementary steps and almost all the elementary reactions are performed at the same high temperature conditions in practical thermocatalysis. Here, we demonstrate by mass spectrometric experiments that RhTiO2− promotes the co‐conversion of CH4 and CO2 to free 2 H2+CO and an adsorbed CO (COads) at room temperature; the only elementary step that requires the input of external energy is desorption of COads from the RhTiO2CO− to reform RhTiO2−. This study not only identifies a promising active species for dry (CO2) reforming of methane to syngas, but also emphasizes the importance of temperature control over elementary steps in practical catalysis, which may significantly alleviate the carbon deposition originating from the pyrolysis of methane.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
7
|
Yang Y, Li Y, Zhao Y, Wei G, Ren Y, Asmis KR, He S. Gemeinsame katalytische Umsetzung von CH
4
und CO
2
durch Rhodium‐Titanoxid‐Anionen RhTiO
2
−. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Ya‐Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Gong‐Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
| | - Knut R. Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| |
Collapse
|
8
|
Li Y, Wang M, Ding YQ, Zhao CY, Ma JB. Consecutive methane activation mediated by single metal boride cluster anions NbB 4. Phys Chem Chem Phys 2021; 23:12592-12599. [PMID: 34047332 DOI: 10.1039/d1cp01418h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cleavage of all C-H bonds in two methane molecules by gas-phase cluster ions at room temperature is a challenging task. Herein, mass spectrometry and quantum chemical calculations have been used to identify one single metal boride cluster anions NbB4- that can activate eight C-H bonds in two methane molecules and release one H2 molecule each time under thermal collision conditions. In these consecutive reactions, the loaded Nb atoms and the support B4 units play different roles but act synergistically to activate CH4, which is responsible for the interesting reactivity of NbB4-. Moreover, there are some mechanistic differences in these two reactions, including the mechanisms for the first C-H bond activation steps, dihydrogen desorption sites, and major electron donors. This study shows that non-noble metal boride species are reactive enough to facilitate thermal C-H bond cleavages, and boron-based materials may be one kind of potential support material facilitating surface hydrogen transport.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
9
|
Ning F, Li B, Song J, Zuo Y, Shang H, Zhao Z, Yu Z, Chu W, Zhang K, Feng G, Wang X, Xia D. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat Commun 2020; 11:4973. [PMID: 33009376 PMCID: PMC7532436 DOI: 10.1038/s41467-020-18423-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Li-rich layered oxide cathode materials show high capacities in lithium-ion batteries owing to the contribution of the oxygen redox reaction. However, structural accommodation of this reaction usually results in O–O dimerization, leading to oxygen release and poor electrochemical performance. In this study, we propose a new structural response mechanism inhibiting O–O dimerization for the oxygen redox reaction by tuning the local symmetry around the oxygen ions. Compared with regular Li2RuO3, the structural response of the as-prepared local-symmetry-tuned Li2RuO3 to the oxygen redox reaction involves the telescopic O–Ru–O configuration rather than O–O dimerization, which inhibits oxygen release, enabling significantly enhanced cycling stability and negligible voltage decay. This discovery of the new structural response mechanism for the oxygen redox reaction will provide a new scope for the strategy of enhancing the anionic redox stability, paving unexplored pathways toward further development of high capacity Li-rich layered oxides. Li-rich layered oxide cathodes show high capacities in Li-ion batteries but suffer from structural degradation via O–O dimerization. Here, the authors present local-symmetry-tuned Li2RuO3 with oxygen redox involving a telescopic O–Ru–O configuration avoiding O2 release, enhancing cycling stability.
Collapse
Affiliation(s)
- Fanghua Ning
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Biao Li
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jin Song
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yuxuan Zuo
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Huaifang Shang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zimeng Zhao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Zhen Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Kun Zhang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xiayan Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, College of Engineering, Peking University, Beijing, 100871, People's Republic of China. .,Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|