1
|
Aslam MK, Wang H, Nie Z, Chen S, Li Q, Duan J. Unlock flow-type reversible aqueous Zn-CO 2 batteries. MATERIALS HORIZONS 2024; 11:2657-2666. [PMID: 38597197 DOI: 10.1039/d4mh00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Metal-CO2 batteries, which use CO2 as the active species at cathodes, are particularly promising, but device design for mass-producible CO2 reduction and energetic power supply lag behind, limiting their potential benefits. In this study, an aqueous reversible flow-type Zn-CO2 battery using a Pd/SnO2@C cathode catalyst has been assembled and demonstrates an ultra-high discharge voltage of 1.38 V, a peak power density of 4.29 mW cm-2, high-energy efficiency of 95.64% and remarkable theoretical energy density (827.3 W h kg-1). In the meantime, this optimized system achieves a high formate faradaic efficiency of 95.86% during the discharge process at a high rate of 4.0 mA cm-2. This energy- and chemical-conversion technology could store and provide electricity, eliminate CO2 and produce valuable chemicals, addressing current energy and environment issues simultaneously.
Collapse
Affiliation(s)
- Muhammad Kashif Aslam
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Herui Wang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Zhihao Nie
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Sheng Chen
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Qiang Li
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jingjing Duan
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
2
|
Liu H, Li R, Yang T, Wang J. Construction of SnS 2-modified multi-hole carbon nanofibers with sulfur encapsulated as free-standing cathode electrode for lithium sulfur battery. NANOTECHNOLOGY 2024; 35:215402. [PMID: 38377620 DOI: 10.1088/1361-6528/ad2b49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Lithium-sulfur (Li-S) batteries exhibit a huge potential in energy storage devices for the thrilling theoretical energy density (2600 Wh kg-1). Nevertheless, the serious shuttle effect rooted in polysulfides and retardative hysteresis reaction kinetics results in inferior cycling and rate performances of Li-S batteries, impeding commercial applications. In order to further promote the energy storage abilities of Li-S batteries, a unique binder-free sulfur carrier consisting of SnS2-modified multi-hole carbon nanofibers (SnS2-MHCNFs) has been constructed, where MHCNFs can offer abundant space to accommodate high-level sulfur and SnS2can promote the adsorption and catalyst capability of polysulfides, synergistically promoting the lithium-ion storage performances of Li-S batteries. After sulfur loading (SnS2-MHCNFs@S), the material was directly applied as a cathode electrode of the Li-S battery. The SnS2-MHCNFs@S electrode maintained a good discharge capacity of 921 mAh g-1after 150 cycles when the current density was 0.1 C (1 C = 1675 mA g-1), outdistancing the MHCNFs@S (629 mAh g-1) and CNFs@S (249 mAh g-1) electrodes. Meanwhile, the SnS2-MHCNFs@S electrode still exhibited a discharge capacity of 444 mAh g-1at 2 C. The good performance of SnS2-MHCNFs@S electrode indicates that combining multihole structure designation and polar material modification are highly effective methods to boost the performances of Li-S batteries.
Collapse
Affiliation(s)
- Hanyu Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - RuiXue Li
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Ting Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| |
Collapse
|
3
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
Li J, Gao B, Shi Z, Chen J, Fu H, Liu Z. Graphene/Heterojunction Composite Prepared by Carbon Thermal Reduction as a Sulfur Host for Lithium-Sulfur Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4956. [PMID: 37512231 PMCID: PMC10383576 DOI: 10.3390/ma16144956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
An interlayer nanocomposite (CC@rGO) consisting of a graphene heterojunction with CoO and Co9S8 was prepared using a simple and low-cost hydrothermal calcination method, which was tested as a cathode sulfur carrier for lithium-sulfur batteries. The CC@rGO composite comprises a spherical heterostructure uniformly distributed between graphene sheet layers, preventing stacking the graphene sheet layer. After the introduction of cobalt heterojunction on a graphene substrate, the Co element content increases the reactive sites of the composite and improves its electrochemical properties to some extent. The composite exhibited good cycling performance with an initial discharge capacity of 847.51 mAh/g at 0.5 C and a capacity decay rate of 0.0448% after 500 cycles, which also kept 452.91 mAh/g at 1 C and in the rate test from 3 C back to 0.1 C maintained 993.27 mAh/g. This article provides insight into the design of cathode materials for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zeyuan Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Jiayang Chen
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Haiyang Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zhuang Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Zhao Q, Bao X, Meng L, Dong S, Zhang Y, Qing C, Zhu T, Wang HE. Nitrogen-Doped Hollow Carbon@Tin Disulfide as A Bipolar Dynamic Host for Lithium-Sulfur Batteries with Enhanced Kinetics and Cyclability. J Colloid Interface Sci 2023; 644:546-555. [PMID: 37012112 DOI: 10.1016/j.jcis.2023.03.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Lithium-sulfur batteries (LSBs) are promising next-generation electrochemical energy storage systems owing to high theoretical specific capacity (1675 mAh/g) and low cost. However, the shuttling effect of soluble polysulfides with slow conversion kinetics has deferred their commercial applications. The feasible design and synthesis of composite cathode hosts offer a promise solution to improving their electrochemical performances. In this work, tin disulfide (SnS2) nanosheets were anchored on nitrogen-doped hollow carbon with mesoporous shells, forming a bipolar dynamic host ("SnS2@NHCS"). It can efficiently confine the polysulfides and promote their conversion during (dis)charge. The as-assembled LSBs delivered a high capacity, superior rate and cyclability. This work presents a new view on the exploration of novel composite electrode materials for various rechargeable batteries with emerging applications.
Collapse
|
6
|
Liu H, Chen Z, Yang X, Hong S, Zhang Z, Yang Z, Cai J. Hollow cubic ZnS-SnS2 heterostructures as sulfur hosts to enhance chemisorption and catalytic conversion of polysulfides for Lithium sulfur batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Wei C, Liu H, Gan R, Ma W, Wang Y, Han Y, Song Y, Ma C, Shi J. Flexible NiCo2S4-hollow carbon nanofibers electrocatalytic membrane as an advanced interlayer for lithium-sulfur batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yao Y, Chang C, Sun H, Guo D, Li R, Pu X, Zhai J. Hollow Ni 3Se 4 with High Tap Density as a Carbon-Free Sulfur Immobilizer to Realize High Volumetric and Gravimetric Capacity for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25267-25277. [PMID: 35613059 DOI: 10.1021/acsami.2c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite that the practical gravimetric energy density of lithium sulfur batteries has exceeded that of the traditional lithium-ion battery, the volumetric energy density still pales due to the low density of carbonaceous materials. Herein, hollow polar nickel selenide (Ni3Se4) with various architectures was designed and employed as a carbon-free sulfur immobilizer. Among them, hollow sea urchins like Ni3Se4 with high porosity (0.39 cm3 g-1) and large specific surface area (82.7 m2 g-1) exhibit abundant adsorptive and electrocatalytic sites, which pledge excellent electrochemical performances of the Li-S battery. Correspondingly, the Ni3Se4-based sulfur electrode presents excellent rate endurability (581 mAh g-1-composite at 2.0 C) and superior cycle stability (ultralow fading rate of 0.042% per cycle during the 1000 cycles at 1.0 C). More importantly, thanks to the higher tap density (Ni3Se4/S: 1.57 g cm-3 vs super P/S: 0.7 g cm-3), the volumetric specific capacity of Ni3Se4-based cathodes is as high as 1699 mAh cm-3-composite at 0.1 C, which is almost 2.8 times that of the carbonaceous electrode. Hence, rational transition metal selenide architecture design with synergistic function of good conductivity, well-defined catalyst and adsorption, as well as high tap density provide a promising route toward high gravimetric and volumetric energy density of Li-S batteries.
Collapse
Affiliation(s)
- Yuan Yao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Caiyun Chang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Hao Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Di Guo
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Rongrong Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiong Pu
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, China
| | - Junyi Zhai
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Jin S, Gu F, Wang J, Ma X, Qian C, Lan Y, Han Q, Li J, Wang X, Zhang R, Qiao W, Ling L, Jin M. Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zhou Z, Deng J, Zhang X, Chen J, Liu J, Wang Z. Theoretical design of SnS 2-graphene heterojunctions with vacancy and impurity defects for multi-purpose photoelectric devices. Phys Chem Chem Phys 2021; 24:966-974. [PMID: 34914818 DOI: 10.1039/d1cp04552k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnS2 with atomic thickness has attracted extensive attention in the field of photocatalysis due to its special physicochemical properties, suitable band gap, low cost and low environmental toxicity. However, the application of SnS2 in the field of optoelectronics is restricted by its low photocatalytic efficiency and carrier mobility. In this study, vacancies and transition metal atoms are introduced into a SnS2 monolayer to modulate its physicochemical properties. Meanwhile, the SnS2 monolayer modified by vacancies and transition metal atoms is combined with graphene to form a heterostructure, which promotes the separation of photogenerated electron-hole pairs. The results of theoretical calculations show that the SnS2/graphene heterojunction can promote the separation of photogenerated carriers in intrinsic monolayer SnS2, and improve the photocatalytic efficiency and carrier mobility. The modification of Sn vacancies and Fe, Co atoms not only expands the visible light response range of the SnS2/graphene heterojunction, but also introduces magnetism, which is expected to be applied in spin optoelectronic materials. In this work, defects, doping and heterojunction assembly are rationally integrated, which provides a new idea for the design and development of spin optoelectronic devices based on monolayer SnS2.
Collapse
Affiliation(s)
- Zhonghao Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jianjun Deng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Xingchen Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jinglong Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Jia Liu
- No. 24 Research Institute, China Electronics Technology Group Corporation, Chongqing 401332, China
| | - Zhiyong Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
11
|
Li Y, Wang X, Wang L, Jia D, Yang Y, Liu X, Sun M, Zhao Z, Qiu J. Ni@Ni 3N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48536-48545. [PMID: 34609835 DOI: 10.1021/acsami.1c11793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries are recognized as one of the most promising next-generation energy storage devices, but their practical application is greatly limited by several obstacles, such as the highly insulating nature and sluggish redox kinetics of sulfur and the dissolution of lithium polysulfides. Herein, three-dimensional carbon nanosheet frameworks anchored with Ni@Ni3N heterostructure nanoparticles (denoted Ni@Ni3N/CNS) are designed and fabricated by a chemical blowing and thermal nitridation strategy. It is demonstrated that the Ni@Ni3N heterostructure can effectively accelerate polysulfide conversion and promote the chemical trapping of polysulfides. Meanwhile, the carbon nanosheet frameworks of Ni@Ni3N/CNS establish a highly conductive network for fast electron transportation. The cells with Ni@Ni3N heterostructures as the catalyst in the cathode show excellent electrochemical performance, revealing stable cycling over 600 cycles with a low-capacity fading rate of 0.04% per cycle at 0.5 C and high-rate capability (594 mAh g-1 at 3 C). Furthermore, Ni@Ni3N/CNS can also work well in room-temperature sodium-sulfur (RT-Na/S) batteries, delivering a high specific capacity (454 mAh g-1 after 400 cycles at 0.5 C). This work provides a rational way to prepare the metal-metal nitride heterostructures to enhance the performance both of Li-S and RT-Na/S batteries.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Luxiang Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yongzhen Yang
- Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Minghui Sun
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Huang X, Zhao Y, Lin K, Liu X, Zhao J, Chen H, Wang Z, Hou X. Vertical 2-dimensional heterostructure SnS-SnS 2 with built-in electric field on rGO to accelerate charge transfer and improve the shuttle effect of polysulfides. J Colloid Interface Sci 2021; 608:120-130. [PMID: 34624761 DOI: 10.1016/j.jcis.2021.09.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
Traditional carbon materials as sulfur hosts of Li-sulfur(Li-S) cathodes have slightly physical constraint for polysulfides, due to their no-polar property. Therefore, it is necessary to further enhance the affinity between sulfur hosts and polysulfides, and relieve the shuttle effects in the Li- S batteries. Herein, we report a novel vertical 2-dimensional (2D) p-SnS/n-SnS2 heterostructure sheets which grown on the surface of rGO. The excellent electrochemical properties of SnS-SnS2@rGO as Li-S cathode are ascribed to the stronger absorption effect of metal sulphides for polysulfides and the smooth trapping-diffusion-conversion effect of p-SnS/n-SnS2 heterostructure for polysulfides. As a conductive carrier for the growth of vertical 2D p-SnS/n-SnS2 heterostructure nanosheets, rGO can protect the steadiness and enhance the cycle stability of electrode, compared with heterostructure without rGO. In addition, the built-in electric field in the 2D p-SnS/n-SnS2 heterostructure during the discharge/charge processes can effectively accelerate charge transfer, and the charge transfer mechanism in SnS-SnS2 heterostructure during cycling has been investigated. At a rate capability of 2C, the designed SnS-SnS2@rGO as Li-S cathode delivers high specific capacities of 907 mAh g-1 and 571 mAh g-1 after the first cycle and 500 cycles, respectively, which shown excellent cycling ability.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Yu Zhao
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kangshou Lin
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Xiang Liu
- National and Local Joint Engineering Research Center of Key Materials and Technologies for High Energy and Safety Batteries, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China; School of Energy Science and Engineering, Institute of Advanced Materials, Nanjing University of Technology, Nanjing 210009, China; Guangdong Lingguang New Material Co., Ltd, Zhaoqing 526108, China
| | - Jinzhu Zhao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Hedong Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | - Zhoulu Wang
- National and Local Joint Engineering Research Center of Key Materials and Technologies for High Energy and Safety Batteries, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China; School of Energy Science and Engineering, Institute of Advanced Materials, Nanjing University of Technology, Nanjing 210009, China.
| | - Xianhua Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; National and Local Joint Engineering Research Center of Key Materials and Technologies for High Energy and Safety Batteries, Engineering Research Center of MTEES (Ministry of Education), South China Normal University, Guangzhou 510006, China; fSCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China.
| |
Collapse
|
13
|
Mao X, Yu Y, Zhu L, Fu A. SnS2 monolayer and SnS2/graphene heterostructure as promising anchoring materials for lithium-sulfur batteries: A computational study. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Li W, Song Q, Li M, Yuan Y, Zhang J, Wang N, Yang Z, Huang J, Lu J, Li X. Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage. SMALL METHODS 2021; 5:e2100444. [PMID: 34927864 DOI: 10.1002/smtd.202100444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 06/14/2023]
Abstract
The chemical heterointerfaces in hybrid electrode materials play an important role in overcoming the intrinsic drawbacks of individual materials and thus expedite the in-depth development of electrochemical energy storage. Benefiting from the three enhancement effects of accelerating charge transport, increasing the number of storage sites, and reinforcing structural stability, the chemical heterointerfaces have attracted extensive interest and the electrochemical performances of hybrid electrode materials have been significantly optimized. In this review, recent advances regarding chemical heterointerface engineering in hybrid electrode materials are systematically summarized. Especially, the intrinsic behaviors of chemical heterointerfaces on hybrid electrode materials are refined based on built-in electric field, van der Waals interaction, lattice mismatch and connection, electron cloud bias and chemical bond, and their combination. The strategies for introducing chemical heterointerfaces are classified into in situ local transformation, in situ growth, cosynthesis, and other strategy. The recent progress about the chemical heterointerfaces engineering specially focusing on metal-ion batteries, supercapacitors, and Li-S batteries are introduced in detail. Furthermore, the classification and characterization of chemical heterointerfaces are briefly described. Finally, the emerging challenges and perspectives about future directions of chemical heterointerface engineering are proposed.
Collapse
Affiliation(s)
- Wenbin Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Qianqian Song
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yifei Yuan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jianhua Zhang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Ni Wang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zihao Yang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jianfeng Huang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xifei Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Center for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
15
|
Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of Heterostructure Materials in Energy Storage: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100855. [PMID: 34033149 DOI: 10.1002/adma.202100855] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Xinhui Xia
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
16
|
Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003666. [PMID: 34096100 DOI: 10.1002/adma.202003666] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Lithium-ion batteries, which have revolutionized portable electronics over the past three decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy density of current lithium-ion batteries is approaching its limit, developing new battery technologies beyond lithium-ion chemistry is significant for next-generation high energy storage. Lithium-sulfur (Li-S) batteries, which rely on the reversible redox reactions between lithium and sulfur, appears to be a promising energy storage system to take over from the conventional lithium-ion batteries for next-generation energy storage owing to their overwhelming energy density compared to the existing lithium-ion batteries today. Over the past 60 years, especially the past decade, significant academic and commercial progress has been made on Li-S batteries. From the concept of the sulfur cathode first proposed in the 1960s to the current commercial Li-S batteries used in unmanned aircraft, the story of Li-S batteries is full of breakthroughs and back tracing steps. Herein, the development and advancement of Li-S batteries in terms of sulfur-based composite cathode design, separator modification, binder improvement, electrolyte optimization, and lithium metal protection is summarized. An outlook on the future directions and prospects for Li-S batteries is also offered.
Collapse
Affiliation(s)
- Yi Chen
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tianyi Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Huajun Tian
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Dawei Su
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
17
|
Significant Constraints of SnO
2
, SnS
2
, and SnS
2
/SnO
2
Heterostructures on Mitigating Polysulfide Shuttle Effects in Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Yang X, Chen S, Gong W, Meng X, Ma J, Zhang J, Zheng L, Abruña HD, Geng J. Kinetic Enhancement of Sulfur Cathodes by N-Doped Porous Graphitic Carbon with Bound VN Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004950. [PMID: 33155429 DOI: 10.1002/smll.202004950] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The reaction kinetics of sulfur cathodes generally control the performance of lithium-sulfur (Li-S) batteries. Here, N-doped porous graphitic carbon with bound VN nanocrystals (3D VN@N-PGC), which is synthesized in one pot by heating a mixture of glucose as C source, urea as N source, and NH4 VO3 as V source, is reported to be an superior electrocatalytic cathode host for Li-S batteries. Notably, the VN nanocrystals, strongly bound to the N-PGC network, form via in situ reactions among the thermolytic products of starting materials. The dopant N atoms and bound VN nanocrystals exhibit synergistic electrocatalytic effects to promote the cathode reactions of the Li-S cells. The observed enhancements are supported by density functional theory simulations and by the observation of electrocatalytic N- and V-intermediate species, via X-ray absorption near-edge structure spectroscopy. Li-S cells assembled using 3D VN@N-PGC as cathode host exhibit superior performance in terms of specific capacity (1442 mA h g-1 at 0.1 C), rate capability (641 mA h g-1 at 4 C), and cycle life (466 mA h g-1 after 1700 cycles at 2 C, corresponding to a capacity decay of 0.020% per cycle). The one-pot methodology is facile and scalable and offers a new approach for synthesis of various metal nitride-containing materials for other electrocatalytic applications.
Collapse
Affiliation(s)
- Xinyue Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Shang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Xiaodong Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Junpeng Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Jianxin Geng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
19
|
Li J, Chen Y, Zhang S, Xie W, Xu SM, Wang G, Shao M. Coordinating Adsorption and Catalytic Activity of Polysulfide on Hierarchical Integrated Electrodes for High-Performance Flexible Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49519-49529. [PMID: 32924417 DOI: 10.1021/acsami.0c10453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been known to be a promising substitute because of their much higher theoretical energy density than that of traditional Li-ion batteries. However, the low utilization of sulfur caused by the poor conductivity of sulfur and shuttle of lithium polysulfides (LiPSs) severely restrict the commercial application of Li-S batteries, especially in flexible wearable devices. Herein, a hierarchical nitrogen-doped carbon nanotube (NCNT)@Co-Co3O4 nanowire array (NWA)-integrated electrode was developed based on the rational design of density functional theory calculations, which shows simultaneous confinement adsorption and catalysis conversion of LiPSs. In situ Raman spectra further proved that the NCNT@Co-Co3O4 NWAs exhibit sufficient adsorption capacity and high catalytic conversion of LiPSs. As a result, the NCNT@Co-Co3O4@S electrode exhibited the desirable specific capacity and excellent cyclic stability at both low and high sulfur loadings. Moreover, pouch cells with the NCNT@Co-Co3O4@S cathode show higher capacity under flat or bending states and longer cycle stability than that of the reported results. This work provides a new approach for the development of high-performance Li-S batteries toward future wearable electronics.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuwei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shimeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenfu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guirong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
Jin Z, Lin T, Jia H, Liu B, Zhang Q, Chen L, Zhang L, Li L, Su Z, Wang C. in situ engineered ultrafine NiS 2-ZnS heterostructures in micro-mesoporous carbon spheres accelerating polysulfide redox kinetics for high-performance lithium-sulfur batteries. NANOSCALE 2020; 12:16201-16207. [PMID: 32705100 DOI: 10.1039/d0nr04189k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Host materials that can physically confine and chemically adsorb/catalyze lithium polysulfides (LiPSs) are currently receiving intensive research interest for developing lithium-sulfur (Li-S) batteries. Herein, a novel host material made of micro-mesoporous carbon nanospheres (MMC NSs) with well-dispersed ultrafine NiS2-ZnS (uNiS2-ZnS) heterostructures is synthesized for the first time via a simple in situ sulfuration process. The uNiS2-ZnS/MMC materials achieve the synergistic effect of physical confinement and the efficient chemical adsorption/catalysis of LiPSs through a micro-mesoporous structure and well-dispersed uNiS2-ZnS heterostructures. In addition, compared with bulk heterostructured materials, the uNiS2-ZnS heterostructures greatly enhance the adsorption and catalytic ability toward LiPSs because the catalysis interface effect and naturally formed in-plane interfaces can be magnified by the ultrafine dispersed nanoparticles. As a result, the prepared uNiS2-ZnS/MMC-S cathodes exhibit outstanding rate capacity (675.5 mA h g-1 at 5.0C) and cyclic stability (710.5 mA h g-1 at 1.0C after 1000 cycles with a low capacity decay of 0.033% per cycle). This work provides a certain reference for the application of heterostructured materials in Li-S batteries.
Collapse
Affiliation(s)
- Zhanshuang Jin
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithium–sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Huang C, Sun T, Shu H, Chen M, Liang Q, Zhou Y, Gao P, Xu S, Yang X, Wu M, Jian J, Wang X. Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Wang M, Song Y, Sun Z, Shao Y, Wei C, Xia Z, Tian Z, Liu Z, Sun J. Conductive and Catalytic VTe 2@MgO Heterostructure as Effective Polysulfide Promotor for Lithium-Sulfur Batteries. ACS NANO 2019; 13:13235-13243. [PMID: 31652045 DOI: 10.1021/acsnano.9b06267] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries are recognized as one of the most promising energy storage systems due to the high energy density and cost effectiveness. However, their practical implementation has still been handicapped due to notorious lithium polysulfide (LiPS) shuttle and depressed sulfur redox kinetics. It is therefore desirable to exploit key mediators synergizing electrical conductivity and electrocatalytic activity for the cathode. Herein, we report the employment of atmospheric pressure chemical vapor deposition to harness the efficient and controllable synthesis of metallic VTe2 over particulated MgO substrates, which has scarcely been demonstrated by conventional wet-chemical synthetic routes thus far. The thus-derived VTe2@MgO heterostructure as an efficient promotor enables effective regulation of LiPSs with respect to polysulfide capture/conversion and Li2S decomposition. As a result, a S/VTe2@MgO cathode with a sulfur loading of 1.6 mg cm-2 harvests long-term cyclability with a negligible capacity decay of 0.055% per cycle over 1000 cycles at 1.0 C. Even at a sulfur loading of 6.9 mg cm-2, the cathode still delivers electrochemical performances that can rival the state-of-the-art high-loading counterparts. Our work might offer a feasible solution for developing heterostructured promotors with multifunctionality and electrocatalytic activity for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Menglei Wang
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Yingze Song
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Zhongti Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Yuanlong Shao
- Physical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Zhou Xia
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Zhengnan Tian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
| | - Zhongfan Liu
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
- Beijing Graphene Institute (BGI) , Beijing 100095 , P.R. China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P.R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies , Soochow University , Suzhou 215006 , P.R. China
- Beijing Graphene Institute (BGI) , Beijing 100095 , P.R. China
| |
Collapse
|
24
|
Zhang J, You C, Wang J, Guo S, Zhang W, Yang R, Fu P. Synergistic Catalytic Effect of Ion Tunnels with Polar Dopants to Boost the Electrochemical Kinetics for High‐Performance Sulfur Cathodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201901360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Zhang
- School of Materials Science and EngineeringXi'an University of Technology Xi'an 710048 P. R. China
| | - Caiyin You
- School of Materials Science and EngineeringXi'an University of Technology Xi'an 710048 P. R. China
| | - Jian Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou, Jiangsu 215123 P. R. China
| | - Shaohua Guo
- School of Materials Science and EngineeringXi'an University of Technology Xi'an 710048 P. R. China
| | - Weihua Zhang
- School of Materials Science and EngineeringXi'an University of Technology Xi'an 710048 P. R. China
| | - Rong Yang
- School of SciencesXi'an University of Technology Xi'an 710048 P. R. China
| | - Ping Fu
- Hubei Key Laboratory of Plasma Chemistry and Advanced MaterialsSchool of Materials Science and EngineeringWuhan Institute of Technology Wuhan 430073 P. R. China
| |
Collapse
|