1
|
Wu Y, Sutton GD, Halamicek MDS, Xing X, Bao J, Teets TS. Cyclometalated iridium-coumarin ratiometric oxygen sensors: improved signal resolution and tunable dynamic ranges. Chem Sci 2022; 13:8804-8812. [PMID: 35975154 PMCID: PMC9350586 DOI: 10.1039/d2sc02909j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.
Collapse
Affiliation(s)
- Yanyu Wu
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Gregory D Sutton
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Michael D S Halamicek
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Xinxin Xing
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Jiming Bao
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
2
|
Sutton GD, Olumba ME, Nguyen YH, Teets TS. The diverse functions of isocyanides in phosphorescent metal complexes. Dalton Trans 2021; 50:17851-17863. [PMID: 34787613 DOI: 10.1039/d1dt03312c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this Perspective, we highlight many examples of photoluminescent metal complexes supported by isocyanides, with an emphasis on recent developments including several from our own group. Work in this field has shown that the isocyanide can play important structural roles, both as a terminal ligand and as a bridging ligand for polynuclear structures, and can influence the excited-state character and excited-state dynamics. In addition, there are many examples of isocyanide-supported complexes where the isocyanide serves as a chromophoric ligand, meaning the low-energy excited states that are important in the photochemistry are partially or completely localized on the isocyanide. Finally, an emerging trend in the design of luminescent compounds is to use the isocyanide as an electrophilic precursor, converted to an acyclic carbene by nucleophilic addition which imparts certain photophysical advantages. This Perspective aims to show the diverse roles played by isocyanides in the design of luminescent compounds, showcasing the recent developments that have led to a substantial growth in fundamental knowledge, function, and applications related to photoluminescence.
Collapse
Affiliation(s)
- Gregory D Sutton
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA.
| | - Morris E Olumba
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA.
| | - Yennie H Nguyen
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA.
| | - Thomas S Teets
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA.
| |
Collapse
|
3
|
Olumba ME, Na H, Friedman AE, Teets TS. Coordination-Driven Self-Assembly of Cyclometalated Iridium Squares Using Linear Aromatic Diisocyanides. Inorg Chem 2021; 60:5898-5907. [PMID: 33784459 DOI: 10.1021/acs.inorgchem.1c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate facile [4 + 4] coordination-driven self-assembly of cyclometalated iridium(III) using linear aryldiisocyanide bridging ligands (BLs). A family of nine new [Ir(C^N)2(μ-BL)]44+ coordination cages is described, where C^N is the cyclometalating ligand-2-phenylpyridine (ppy), 2-phenylbenzothiazole (bt), or 1-phenylisoquinoline (piq)-and BL is the diisocyanide BL, with varying spacer lengths between the isocyanide binding sites. These supramolecular coordination compounds are prepared via a one-pot synthesis, with isolated yields of 40-83%. 1H NMR spectroscopy confirms the selective isolation of a single product, which is affirmed to be the M4L4 square by high-resolution mass spectrometry. Detailed photophysical studies were carried out to reveal the nature of the luminescent triplet states in these complexes. In most cases, phosphorescence arises from the [Ir(C^N)2]+ nodes, with the emission color determined by the cyclometalating ligand. However, in two cases, the lowest-energy triplet state resides on the aromatic core of the BL, and weak phosphorescence from that state is observed. This work shows that aromatic diisocyanide ligands enable coordination-driven assembly of inert iridium(III) nodes under mild conditions, producing supramolecular coordination complexes with desirable photophysical properties.
Collapse
Affiliation(s)
- Morris E Olumba
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Hanah Na
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Alan E Friedman
- Department of Materials, Design, and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| |
Collapse
|
4
|
Sutton GD, Choung KS, Marroquin K, Teets TS. Bimetallic cyclometalated iridium complexes bridged by a BODIPY linker. Dalton Trans 2020; 49:13854-13861. [PMID: 33006358 DOI: 10.1039/d0dt02690e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Presented here is a new class of supramolecular cyclometalated Ir(iii) complexes. The 2 : 1 assemblies include two phosphorescent cyclometalated Ir(iii) centers spanned by a BODIPY bridge with pyridine substituents at the β-pyrrole positions. The three complexes, which vary with respect to the cyclometalating ligand on iridium, are prepared via a simple one-pot procedure, with the target complexes isolated in 31-75% yield. The photophysics of these new compounds are described in detail. All complexes are strongly photoluminescent, with fluorescence from BODIPY being the dominant emission pathway. One member of the series has a near-unity photoluminescence quantum yield, significantly enhanced relative to the free BODIPY. The cyclometalating ligand on iridium controls the energy of the Ir-centered triplet excited state, but in all cases energy transfer from the Ir centers to the BODIPY quenches almost all phosphorescence. This work outlines a new, simple synthetic method for accessing supramolecular complexes.
Collapse
Affiliation(s)
- Gregory D Sutton
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA.
| | | | | | | |
Collapse
|
5
|
Das B, Borah ST, Ganguli S, Gupta P. Phosphorescent Trinuclear Pt–Ir–Pt Complexes: Insights into the Photophysical and Electrochemical Properties and Interaction with Guanine Nucleobase. Chemistry 2020; 26:14987-14995. [PMID: 32846032 DOI: 10.1002/chem.202002941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Sakira Tabbasum Borah
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Sagar Ganguli
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Parna Gupta
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
6
|
Alvarez S. Coordinating Ability of Anions, Solvents, Amino Acids, and Gases towards Alkaline and Alkaline-Earth Elements, Transition Metals, and Lanthanides. Chemistry 2020; 26:4350-4377. [PMID: 31910294 DOI: 10.1002/chem.201905453] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 02/06/2023]
Abstract
After briefly reviewing the applications of the coordination ability indices proposed earlier for anions and solvents toward transition metals and lanthanides, a new analysis of crystal structures is applied now to a much larger number of coordinating species: anions (including those that are present in ionic solvents), solvents, amino acids, gases, and a sample of neutral ligands. The coordinating ability towards s-block elements is now also considered. The effect of several factors on the coordinating ability will be discussed: (a) the charge of an anion, (b) the chelating nature of anions and solvents, (c) the degree of protonation of oxo-anions, carboxylates and amino carboxylates, and (d) the substitution of hydrogen atoms by methyl groups in NH3 , ethylenediamine, benzene, ethylene, pyridine and aldehydes. Hit parades of solvents and anions most commonly used in the areas of transition metal, s-block and lanthanide chemistry are deduced from the statistics of their presence in crystal structures.
Collapse
Affiliation(s)
- Santiago Alvarez
- Department de Química Inorgànica i Orgànica, Secció de Química Inorgànica and, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|