1
|
Sharma M, Fritz RM, Bhatia H, Adebanjo JO, Lu Z, Omary MA, Cundari TR, Choudhury A, Stavropoulos P. C-H amination chemistry mediated by trinuclear Cu(I) sites supported by a ligand scaffold featuring an arene platform and tetramethylguanidinyl residues. Dalton Trans 2024; 53:15946-15958. [PMID: 39264342 PMCID: PMC11487648 DOI: 10.1039/d4dt01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tripodal ligands that can encapsulate single or multiple metal sites in C3-symmetric geometric configurations constitute valuable targets for novel catalysts. Of particular interest in ligand development are efforts toward incorporating apical elements that exhibit little if any electron donicity, to enhance the electrophilic nature of a trans positioned active oxidant (e.g., metal-oxo, -nitrene). The tripodal ligand TMG3trphen-Arene has been synthesized, featuring an arene platform 1,3,5-substituted with phenylene arms possessing tetramethylguanidinyl (TMG) residues. Compound [(TMG3trphen-Arene)Cu3(μ-Cl)3] has been subsequently synthesized by extracting a Cu3(μ-Cl)3 cluster from anhydrous CuCl and shown to encapsulate a crown-shaped Cu3(μ-Cl)3 fragment, supported by Cu-NTMG bonds and modest Cu3⋯arene long-range contacts. Energy decomposition analysis (EDA) indicates that electrostatic contributions to the total interaction energy far exceed those due to orbital interactions. The latter involve orbital pairings largely associated with the NTMG stabilization of the Cu3(μ-Cl)3 cluster. The independent gradient model based on the Hirshfeld partition (IGMH) corroborates that contacts between the arene platform and the Cu3 triangle are noncovalent in nature. Catalyst [(TMG3trphen-Arene)Cu3(μ-Cl)3] enables amination of sec-benzylic and tert-C-H bonds of a panel of substrates by pre-synthesized PhINTces in solvent matrices that incorporate small amounts of HFIP. The involvement of an electrophilic aminating agent is evidenced by the better yields obtained for electron-rich benzylic sites and is further supported by Hammett analysis that reveals the development of a small positive charge during C-H bond activation. A rather modest KIE effect (2.1) is obtained from intramolecular H(D) competition in the amination of ethylbenzene, at the borderline of reported values for concerted and stepwise C-H amination systems. DFT analysis of the putative copper-nitrene oxidant indicates that the nitrene N atom is bridging between two copper sites in closely spaced triplet (ground state) and broken-symmetry singlet electronic configurations.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Reece M Fritz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Himanshu Bhatia
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Joseph O Adebanjo
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Zhou Lu
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| |
Collapse
|
2
|
Sahoo S, Harfmann B, Bhatia H, Singh H, Balijapelly S, Choudhury A, Stavropoulos P. A Comparative Study of Cationic Copper(I) Reagents Supported by Bipodal Tetramethylguanidinyl-Containing Ligands as Nitrene-Transfer Catalysts. ACS OMEGA 2024; 9:15697-15708. [PMID: 38585072 PMCID: PMC10993379 DOI: 10.1021/acsomega.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
The bipodal compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) and [(TMG2biphenN-Me)CuI-I] have been synthesized with ligands that feature a diarylmethyl- and triaryl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The cationic Cu(I) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI = NTs (Ts = tosyl) and a panel of styrenes in MeCN, to afford aziridines, demonstrating comparable reactivity profiles. The copper reagents have been further explored to execute C-H amination reactions with a variety of aliphatic and aromatic hydrocarbons and two distinct nitrene sources PhI = NTs and PhI = NTces (Tces = 2,2,2-trichloroethylsulfamate) in benzene/HFIP (10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C-H bonds of various substrates, especially with the more electron-deficient catalyst [(TMG2biphenN-Ar)CuI-NCMe](PF6). In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as Cu > Fe > Co ≥ Mn. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.
Collapse
Affiliation(s)
- Suraj
Kumar Sahoo
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Himanshu Bhatia
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Srikanth Balijapelly
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Koser L, Bach T. Total Synthesis of (-)-5-Deoxyenterocin and Attempted Late-Stage Functionalization Reactions. Chemistry 2023; 29:e202301996. [PMID: 37452638 DOI: 10.1002/chem.202301996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The first total synthesis of (-)-5-deoxyenterocin has been accomplished starting from pentane-1,3,5-triol (16 steps in the longest linear sequence, 0.2 % overall yield). (-)-Menthone served as the source of chirality to distinguish the enantiotopic hydroxymethyl groups of the substrate. Key steps of the synthesis include two aldol reactions to either end of the C5 -skeleton, a diastereoselective hydroxylation reaction and a biomimetic twofold intramolecular aldol reaction as the final step. Although this step suffered from geometrical constraints and was low yielding (10 %), enough synthetic material could be secured to substantiate the relative and absolute configuration of the natural product. Additional experiments were directed toward a C-H functionalization at carbon atom C5. Despite the fact that several protocols could be successfully applied to (3aR)-(+)-sclareolide as model substrate, (-)-5-deoxyenterocin withstood any selective functionalization.
Collapse
Affiliation(s)
- Lilla Koser
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
4
|
Bevernaege K, Tzouras NV, Poater A, Cavallo L, Nolan SP, Nahra F, Winne JM. Site selective gold(i)-catalysed benzylic C-H amination via an intermolecular hydride transfer to triazolinediones. Chem Sci 2023; 14:9787-9794. [PMID: 37736629 PMCID: PMC10510626 DOI: 10.1039/d3sc03683a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Triazolinediones are known as highly reactive dienophiles that can also act as electrophilic amination reagents towards enolisable C-H bonds (ionic pathway) or weak C-H bonds (free radical pathway). Here, we report that this C-H amination reactivity can be significantly extended and enhanced via gold(i)-catalysis. Under mild conditions, several alkyl-substituted aryls successfully undergo benzylic C-H aminations at room temperature. The remarkable site selectivity that is observed points towards strong electronic activation and deactivation effects, that go beyond a simple weakening of the C-H bond. The observed catalytic C-H aminations do not follow the expected trends for a free radical-type C-H amination and show complementarity to existing methods. Density functional theory (DFT) calculations and distinct experimental trends provide a clear mechanistic rationale for observed selectivity patterns, postulating a novel pathway for triazolinedione-induced aminations via a carbon-to-nitrogen hydride transfer.
Collapse
Affiliation(s)
- Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Luigi Cavallo
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Steven P Nolan
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Fady Nahra
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| |
Collapse
|
5
|
Li C, Qin Q, Guan A, Yang W, Zhao W. Transition-Metal Free C-C Bond Cross-Coupling of Aryl Ethers with Diarylmethanes. J Org Chem 2023. [PMID: 37196236 DOI: 10.1021/acs.joc.3c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a general and efficient transition-metal free C-C bond cross-coupling of (hetero)aryl ethers and diarylmethanes via C(sp2)-O bond cleavage. The coupling reactions mediated by KHMDS proceeded well with high efficiency, broad substrate scope, and good functional group tolerance. The robustness and practicability of this protocol also have been demonstrated by easy gram-scale preparation and diversified product derivatization.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qi Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Aocong Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
6
|
Song LC, Wang YP, Dong YX, Yang XY. Functionalized nickel(II)-iron(II) dithiolates as biomimetic models of [NiFe]-H 2ases. Dalton Trans 2023; 52:3755-3768. [PMID: 36857705 DOI: 10.1039/d3dt00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To develop the structural and functional modeling chemistry of [NiFe]-H2ases, a series of new biomimetics for the active site of [NiFe]-H2ases have been prepared by various synthetic methods. Treatment of the mononuclear Ni complex (pnp)NiCl2 (pnp = (Ph2PCH2)2NPh) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) and KPF6 gave the dicarbonyl complex [(pnp)Ni(pdt)Fe(CO)2(dppv)](PF6)2 ([1](PF6)2). Further treatment of [1](PF6)2 and [(dppe)Ni(pdt)Fe(CO)2(dppv)](BF4)2 (dppe = 1,2-(Ph2P)2C2H4) with the decarbonylation agent Me3NO and pyridine afforded the novel sp3 C-Fe bond-containing complexes [(pnp)Ni(SCH2CH2CHS)Fe(CO)(dppv)]PF6 ([2]PF6) and [(dppe)Ni(SCH2CH2CHS)Fe(CO)(dppv)]BF4 ([3]BF4). More interestingly, the first t-carboxylato complexes [(pnp)Ni(pdt)Fe(CO)(t-O2CR)(dppv)]PF6 ([4]PF6, R = H; [5]PF6, R = Me; [6]PF6, R = Ph) could be prepared by reactions of [1]PF6 with the corresponding carboxylic acids RCO2H in the presence of Me3NO, whereas further reactions of [4]PF6-[6]PF6 with aqueous HPF6 and 1.5 MPa H2 gave rise to the μ-hydride complex [(pnp)Ni(pdt)Fe(CO)(μ-H)(dppv)]PF6 ([7]PF6). Except for H2 activation by t-carboxylato complexes [4]PF6-[6]PF6 to give a μ-hydride complex ([7]PF6), the sp3 C-Fe bond-containing complex [2]PF6 was found to be a catalyst for proton reduction to H2 under CV conditions. Furthermore, the chemical reactivity of the μ-hydride complex [7]PF6 displayed in the e- transfer reaction with FcPF6 in the presence of CO, the H2 evolution reaction with the protonic acid HCl, and the H- transfer reaction with N-methylacridinium hexafluorophosphate ([NMA]PF6) was systematically studied. As a result, a series of the expected products such as H2, ferrocene, the dicarbonyl complex [1](PF6)2, the μ-chloro complex [(pnp)Ni(pdt)Fe(CO)(μ-Cl)(dppv)]PF6 ([8]PF6), the t-MeCN-coordinated complex [(pnp)Ni(pdt)Fe(CO)(t-MeCN)(dppv)](PF6)2 ([9](PF6)2) and the H- transfer product AcrH2 were produced. While all the newly prepared model complexes were structurally characterized by spectroscopic methods, the molecular structures of some of their representatives were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yin-Peng Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yi-Xiong Dong
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xi-Yue Yang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Wang Y, Zhao L, Ji G, He C, Liu S, Duan C. Vanadium(V IV)-Porphyrin-Based Metal-Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp 3)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2794-2804. [PMID: 34989552 DOI: 10.1021/acsami.1c20420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation and selective functionalization of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry. Herein, by decorating vanadium(VIV)-porphyrin into metal-organic frameworks (MOFs) to stabilize the active tertbutyl peroxide radical, we reported a new approach to accomplish inert C(sp3)-H bond activation by a synergistic bimetallic strategy via a hydrogen atom transfer process under mild conditions. The stabilized peroxide radical by VIV-porphyrin-based MOFs abstracted a hydrogen atom from the inert C(sp3)-H bonds for direct oxidization transformation utilizing environmentally friendly oxygen. Taking advantage of the high stability of Zr6 clusters, the new Zr-MOF was recyclable six times without a conversion efficiency decrease. From this foundation, {Mn3(μ3-O)} cluster nodes with potential unsaturated coordinated sites were introduced into MOFs to replace Zr6 clusters, realizing the pre-activation of substrates through the interaction between Mn nodes and substrates. The synergistic bimetallic activation effect of VIV-porphyrin and Mn nodes dramatically promoted the conversion efficiency and product selectivity for inert C(sp3)-H bond functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
8
|
Jo TG, Klein JEMN. Gold‐Catalyzed Direct C(sp
3
)−H Acetoxylation of Saturated Hydrocarbons. ChemCatChem 2021. [DOI: 10.1002/cctc.202100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tae Geun Jo
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Science and Engineering University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Science and Engineering University of Groningen Nijenborgh 4 9747 AG Groningen (The Netherlands
| |
Collapse
|
9
|
Fan T, Liu Y, Jiang C, Xu Y, Chen Y. A metal-free radical cascade reaction of phosphine oxides with 2-aryloxy phenylacetylenes to synthesize diphosphonyl xanthene derivatives. Org Biomol Chem 2021; 19:6609-6612. [PMID: 34263284 DOI: 10.1039/d1ob01045j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A radical cascade reaction of 2-aryloxy phenylacetylenes with phosphine oxides promoted by K2S2O8 was developed, which provided diphosphonyl xanthenes as products. This reaction proceeds under transition metal-free and mild conditions with simple operation and good yields. The mechanistic study indicated that phosphine oxide was induced into a phosphonyl radical, and then the following double radical addition/cyclization with 2-aryloxy phenylacetylenes generated bisphosphonyl xanthenes.
Collapse
Affiliation(s)
- Tao Fan
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yan Liu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Caina Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yanli Xu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yanyan Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| |
Collapse
|
10
|
Chen X, Sun D, Gao L, Zhao Y, de Visser SP, Wang Y. Theoretical studies unveil the unusual bonding in oxygenation reactions involving cobalt(ii)-iodylarene complexes. Chem Commun (Camb) 2021; 57:3115-3118. [PMID: 33630000 DOI: 10.1039/d0cc07894h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations reveal that the iodine of cobalt(ii)-iodylarene complexes acts as a directing group via halogen bonding interaction to substrates. A transient 3c-4e bond is formed during oxidation reactions to decrease the activation energy by electron delocalization. Dehydrogenation of dihydroantharacene proceeds via a novel concerted hydride transfer/proton transfer mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
11
|
Wild U, Walter P, Hübner O, Kaifer E, Himmel H. Evaluation of the Synthetic Scope and the Reaction Pathways of Proton-Coupled Electron Transfer with Redox-Active Guanidines in C-H Activation Processes. Chemistry 2020; 26:16504-16513. [PMID: 32893902 PMCID: PMC7756729 DOI: 10.1002/chem.202003424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) is currently intensively studied because of its importance in synthetic chemistry and biology. In recent years it was shown that redox-active guanidines are capable PCET reagents for the selective oxidation of organic molecules. In this work, the scope of their PCET reactivity regarding reactions that involve C-H activation is explored and kinetic studies carried out to disclose the reaction mechanisms. Organic molecules with potential up to 1.2 V vs. ferrocenium/ferrocene are efficiently oxidized. Reactions are initiated by electron transfer, followed by slow proton transfer from an electron-transfer equilibrium.
Collapse
Affiliation(s)
- Ute Wild
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Petra Walter
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
12
|
Gericke R, Doyle LM, Farquhar ER, McDonald AR. Oxo-Free Hydrocarbon Oxidation by an Iron(III)-Isoporphyrin Complex. Inorg Chem 2020; 59:13952-13961. [PMID: 32955871 DOI: 10.1021/acs.inorgchem.0c01618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-halides that perform proton coupled electron-transfer (PCET) oxidation are an important new class of high-valent oxidant. In investigating metal-dihalides, we reacted [FeIII(Cl)(T(OMe)PP)] (1, T(OMe)PP = meso-tetra(4-methoxyphenyl)porphyrinyl) with (dichloroiodo)benzene. An FeIII-meso-chloro-isoporphyrin complex [FeIII(Cl)2(T(OMe)PP-Cl)] (2) was obtained. 2 was characterized by electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies and mass spectrometry with support from computational analyses. 2 was reacted with a series of hydrocarbon substrates. The measured kinetic data exhibited a nonlinear behavior, whereby the oxidation followed a hydrogen-atom-transfer (HAT) PCET mechanism. The meso-chlorine atom was identified as the HAT agent. In one case, a halogenated product was identified by mass spectrometry. Our findings demonstrate that oxo-free hydrocarbon oxidation with heme systems is possible and show the potential for iron-dihalides in oxidative hydrocarbon halogenation.
Collapse
Affiliation(s)
- Robert Gericke
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Lorna M Doyle
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Erik R Farquhar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Case Western Reserve University Center for Synchrotron Biosciences, Upton, New York 11973, United States
| | - Aidan R McDonald
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
13
|
van Leest NP, Tepaske MA, Venderbosch B, Oudsen JPH, Tromp M, van der Vlugt JI, de Bruin B. Electronically Asynchronous Transition States for C–N Bond Formation by Electrophilic [CoIII(TAML)]-Nitrene Radical Complexes Involving Substrate-to-Ligand Single-Electron Transfer and a Cobalt-Centered Spin Shuttle. ACS Catal 2020; 10:7449-7463. [PMID: 35912398 PMCID: PMC9333348 DOI: 10.1021/acscatal.0c01343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
oxidation state of the redox noninnocent tetra-amido macrocyclic
ligand (TAML) scaffold was recently shown to affect the formation
of nitrene radical species on cobalt(III) upon reaction with PhI=NNs
[van
LeestN. P.; J. Am. Chem. Soc.2020, 142, 552−56331846578]. For the neutral [CoIII(TAMLsq)] complex, this
leads to the doublet (S = 1/2) mono-nitrene radical species [CoIII(TAMLq)(N•Ns)(Y)] (bearing an unidentified
sixth ligand Y in at least the frozen state), while a triplet (S = 1) bis-nitrene radical species [CoIII(TAMLq)(N•Ns)2]– is generated from the anionic [CoIII(TAMLred)]– complex. The one-electron-reduced
Fischer-type nitrene radicals (N•Ns–) are formed through single (mono-nitrene) or double (bis-nitrene)
ligand-to-substrate single-electron transfer (SET). In this work,
we describe the reactivity and mechanisms of these nitrene radical
complexes in catalytic aziridination. We report that [CoIII(TAMLsq)] and [CoIII(TAMLred)]– are both effective catalysts for chemoselective (C=C
versus C–H bonds) and diastereoselective aziridination of styrene
derivatives, cyclohexane, and 1-hexene under mild and even aerobic
(for [CoIII(TAMLred)]–) conditions.
Experimental (Hammett plots; [CoIII(TAML)]-nitrene radical formation and quantification
under catalytic conditions; single-turnover experiments; and tests
regarding catalyst decomposition, radical inhibition, and radical
trapping) in combination with computational (density functional theory
(DFT), N-electron valence state perturbation theory corrected complete
active space self-consistent field (NEVPT2-CASSCF)) studies reveal
that [CoIII(TAMLq)(N•Ns)(Y)], [CoIII(TAMLq)(N•Ns)2]–, and [CoIII(TAMLsq)(N•Ns)]– are key electrophilic intermediates
in aziridination reactions. Surprisingly, the electrophilic one-electron-reduced
Fischer-type nitrene radicals do not react as would be expected for
nitrene radicals (i.e., via radical addition and radical rebound).
Instead, nitrene transfer proceeds through unusual electronically
asynchronous transition states, in which the (partial) styrene substrate
to TAML ligand (single-) electron transfer precedes C–N coupling.
The actual C–N bond formation processes are best described
as involving a nucleophilic attack of the nitrene (radical) lone pair
at the thus (partially) formed styrene radical cation. These processes
are coupled to TAML-to-cobalt and cobalt-to-nitrene single-electron
transfer, effectively leading to the formation of an amido-γ-benzyl
radical (NsN––CH2–•CH–Ph) bound to an intermediate spin (S = 1) cobalt(III) center. Hence, the TAML moiety can be
regarded to act as a transient electron acceptor, the cobalt center
behaves as a spin shuttle, and the nitrene radical acts as a nucleophile.
Such a mechanism was hitherto unknown for cobalt-catalyzed hypovalent
group transfer and the more general transition-metal-catalyzed nitrene
transfer to alkenes but is now shown to complement the known concerted
and stepwise mechanisms for N-group transfer.
Collapse
|
14
|
|
15
|
Wen X, Li X, Luo X, Wang W, Song S, Jiao N. Intramolecular Csp 3-H/C-C bond amination of alkyl azides for the selective synthesis of cyclic imines and tertiary amines. Chem Sci 2020; 11:4482-4487. [PMID: 34122906 PMCID: PMC8159442 DOI: 10.1039/c9sc05522c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intramolecular Csp3–H and/or C–C bond amination is very important in modern organic synthesis due to its efficiency in the construction of diversified N-heterocycles. Herein, we report a novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines through selective Csp3–H and/or C–C bond cleavage. Two C–N single bonds or a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N double bond are efficiently constructed in these transformations. The carbocation mechanism differs from the reported metal nitrene intermediates and therefore enables metal-free and new transformation. A novel intramolecular cyclization of alkyl azides for the synthesis of cyclic imines and tertiary amines has been developed. The aliphatic C–H or C–C bond was selectively cleaved with the efficient formation of two C–N single bonds or a CN double bond.![]()
Collapse
Affiliation(s)
- Xiaojin Wen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
16
|
Yang YZ, Wu YC, Song RJ, Li JH. Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chem Commun (Camb) 2020; 56:7585-7588. [DOI: 10.1039/d0cc02580a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An oxidant-free electrochemical dehydrogenative cross-coupling of xanthenes and ketones for the preparation of functionalized 9-alkyl-9H-xanthenes was developed.
Collapse
Affiliation(s)
- Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
17
|
Kita Y, Dohi T, Komiyama K, Ueda S, Yamaoka N. Benzylic Oxidation and Functionalizations of Xanthenes by Ligand Trasfer Reactions of Hypervalent Iodine Reagents. HETEROCYCLES 2020. [DOI: 10.3987/com-19-14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
van Leest NP, Grooten L, van der Vlugt JI, de Bruin B. Uncatalyzed Oxidative C-H Amination of 9,10-Dihydro-9-Heteroanthracenes: A Mechanistic Study. Chemistry 2019; 25:5987-5993. [PMID: 30793814 PMCID: PMC6563809 DOI: 10.1002/chem.201900377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/29/2022]
Abstract
A new method for the one‐step C−H amination of xanthene and thioxanthene with sulfonamides is reported, without the need for any metal catalyst. A benzoquinone was employed as a hydride (or two‐electron and one‐proton) acceptor. Moreover, a previously unknown and uncatalyzed reaction between iminoiodanes and xanthene, thioxanthene and dihydroacridines (9,10‐dihydro‐9‐heteroanthracenes or dihydroheteroanthracenes) is disclosed. The reactions proceed through hydride transfer from the heteroarene substrate to the iminoiodane or benzoquinone, followed by conjugate addition of the sulfonamide to the oxidized heteroaromatic compounds. These findings may have important mechanistic implications for metal‐catalyzed C−H amination processes involving nitrene transfer from iminoiodanes to dihydroheteroanthracenes. Due to the weak C−H bond, xanthene is an often‐employed substrate in mechanistic studies of C−H amination reactions, which are generally proposed to proceed via metal‐catalyzed nitrene insertion, especially for reactions involving nitrene or imido complexes that are less reactive (i.e., less strongly oxidizing). However, these substrates clearly undergo non‐catalyzed (proton‐coupled) redox coupling with amines, thus providing alternative pathways to the widely assumed metal‐catalyzed pathways.
Collapse
Affiliation(s)
- Nicolaas P van Leest
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars Grooten
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jarl Ivar van der Vlugt
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|