1
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
2
|
Jäger S, Könning D, Rasche N, Hart F, Sensbach J, Krug C, Raab-Westphal S, Richter K, Unverzagt C, Hecht S, Anderl J, Schröter C. Generation and Characterization of Iduronidase-Cleavable ADCs. Bioconjug Chem 2023; 34:2221-2233. [PMID: 38054705 DOI: 10.1021/acs.bioconjchem.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.
Collapse
Affiliation(s)
| | - Doreen Könning
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Felix Hart
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Carina Krug
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Konstantin Richter
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stefan Hecht
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | |
Collapse
|
3
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
4
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
5
|
Dunsmore L, Navo CD, Becher J, de Montes EG, Guerreiro A, Hoyt E, Brown L, Zelenay V, Mikutis S, Cooper J, Barbieri I, Lawrinowitz S, Siouve E, Martin E, Ruivo PR, Rodrigues T, da Cruz FP, Werz O, Vassiliou G, Ravn P, Jiménez-Osés G, Bernardes GJL. Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination. Nat Chem 2022; 14:754-765. [PMID: 35764792 PMCID: PMC9252919 DOI: 10.1038/s41557-022-00964-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, β-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of β-lapachone upon antibody-mediated delivery. Conjugation of protected β-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.
Collapse
Affiliation(s)
- Lavinia Dunsmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain
| | - Julie Becher
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Emily Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Sigitas Mikutis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Isaia Barbieri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Elise Siouve
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Esther Martin
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Pedro R Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Filipa P da Cruz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
6
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
7
|
Dal Corso A, Arosio S, Arrighetti N, Perego P, Belvisi L, Pignataro L, Gennari C. A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chem Commun (Camb) 2021; 57:7778-7781. [PMID: 34263896 DOI: 10.1039/d1cc02895b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclative cleavage of an amine-carbamate self-immolative spacer to deliver a hydroxyl cargo was inhibited by spacer derivatisation with a phosphate monoester handle. This trifunctional spacer was installed in a model anticancer prodrug that showed fast drug release only when incubated with both a protease and a phosphatase enzyme.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Simone Arosio
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Noemi Arrighetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| |
Collapse
|
8
|
Garcia-Saez I, Skoufias DA. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharmacol 2020; 184:114364. [PMID: 33310050 DOI: 10.1016/j.bcp.2020.114364] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.
Collapse
Affiliation(s)
- Isabel Garcia-Saez
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dimitrios A Skoufias
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
9
|
IL3RA-Targeting Antibody-Drug Conjugate BAY-943 with a Kinesin Spindle Protein Inhibitor Payload Shows Efficacy in Preclinical Models of Hematologic Malignancies. Cancers (Basel) 2020; 12:cancers12113464. [PMID: 33233768 PMCID: PMC7709048 DOI: 10.3390/cancers12113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
IL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi). In vitro, IL3RA-ADC showed potent and selective antiproliferative efficacy in a panel of IL3RA-expressing AML and HL cell lines. In vivo, IL3RA-ADC improved survival and reduced tumor burden in IL3RA-positive human AML cell line-derived (MOLM-13 and MV-4-11) as well as in patient-derived xenograft (PDX) models (AM7577 and AML11655) in mice. Furthermore, IL3RA-ADC induced complete tumor remission in 12 out of 13 mice in an IL3RA-positive HL cell line-derived xenograft model (HDLM-2). IL3RA-ADC was well-tolerated and showed no signs of thrombocytopenia, neutropenia, or liver toxicity in rats, or in cynomolgus monkeys when dosed up to 20 mg/kg. Overall, the preclinical results support the further development of BAY-943 as an innovative approach for the treatment of IL3RA-positive hematologic malignancies.
Collapse
|
10
|
Lerchen HG, Stelte-Ludwig B, Sommer A, Berndt S, Rebstock AS, Johannes S, Mahlert C, Greven S, Dietz L, Jörißen H. Tailored Linker Chemistries for the Efficient and Selective Activation of ADCs with KSPi Payloads. Bioconjug Chem 2020; 31:1893-1898. [DOI: 10.1021/acs.bioconjchem.0c00357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hans-Georg Lerchen
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | | | - Anette Sommer
- Bayer AG, Pharmaceuticals, Research & Development, 13353 Berlin, Germany
| | - Sandra Berndt
- Bayer AG, Pharmaceuticals, Research & Development, 13353 Berlin, Germany
| | | | - Sarah Johannes
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Christoph Mahlert
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Simone Greven
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Lisa Dietz
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| | - Hannah Jörißen
- Bayer AG, Pharmaceuticals, Research & Development, 42113 Wuppertal, Germany
| |
Collapse
|
11
|
Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem 2020; 8:571. [PMID: 32733853 PMCID: PMC7359416 DOI: 10.3389/fchem.2020.00571] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer became recently the leading cause of death in industrialized countries. Even though standard treatments achieve significant effects in growth inhibition and tumor elimination, they cause severe side effects as most of the applied drugs exhibit only minor selectivity for the malignant tissue. Hence, specific addressing of tumor cells without affecting healthy tissue is currently a major desire in cancer therapy. Cell surface receptors, which bind peptides are frequently overexpressed on cancer cells and can therefore be considered as promising targets for selective tumor therapy. In this review, the benefits of peptides as tumor homing agents are presented and an overview of the most commonly addressed peptide receptors is given. A special focus was set on the bombesin receptor family and the neuropeptide Y receptor family. In the second part, the specific requirements of peptide-drug conjugates (PDC) and intelligent linker structures as an essential component of PDC are outlined. Furthermore, different drug cargos are presented including classical and recent toxic agents as well as radionuclides for diagnostic and therapeutic approaches. In the last part, boron neutron capture therapy as advanced targeted cancer therapy is introduced and past and recent developments are reviewed.
Collapse
Affiliation(s)
- Paul Hoppenz
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Sylvia Els-Heindl
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
12
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|