1
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Bell JD, Robb I, Murphy JA. Highly selective α-aryloxyalkyl C–H functionalisation of aryl alkyl ethers. Chem Sci 2022; 13:12921-12926. [DOI: 10.1039/d2sc04463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022] Open
Abstract
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm).
Collapse
Affiliation(s)
- Jonathan D. Bell
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Iain Robb
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
4
|
Shigeno M, Hayashi K, Korenaga T, Nozawa-Kumada K, Kondo Y. Organic superbase t-Bu-P4-catalyzed demethylations of methoxyarenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00483f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The organic superbase t-Bu-P4 catalyzes the demethylation reactions of methoxyarenes in the presence of alkanethiol and hexamethyldisilazane.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Ueda, Morioka, 020-8551, Japan
- Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
5
|
Shigeno M, Shishido Y, Hayashi K, Nozawa‐Kumada K, Kondo Y. KO‐
t
‐Bu Catalyzed Thiolation of
β
‐(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kanako Nozawa‐Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
6
|
Yabuta T, Hayashi M, Matsubara R. Photocatalytic Reductive C-O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate. J Org Chem 2021; 86:2545-2555. [PMID: 33439026 DOI: 10.1021/acs.joc.0c02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered < -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.
Collapse
Affiliation(s)
- Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
8
|
Yasui K, Kamitani M, Fujimoto H, Tobisu M. The Effect of the Leaving Group in N-Heterocyclic Carbene-Catalyzed Nucleophilic Aromatic Substitution Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kosuke Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miharu Kamitani
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hayato Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Catalytic C(sp 2)-C(sp 3) Bond Formation of Methoxyarenes by the Organic Superbase t-Bu-P4. Org Lett 2020; 22:9107-9113. [PMID: 33175552 DOI: 10.1021/acs.orglett.0c03507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organic superbase catalyst t-Bu-P4 achieves nucleophilic aromatic substitution of methoxyarenes with alkanenitrile pronucleophiles. A variety of functional groups [cyano, nitro, (non)enolizable ketone, chloride, and amide moieties] are allowed on methoxyarenes. Moreover, an array of alkanenitriles with/without an aryl moiety at the nitrile α-position can be employed. The system also features no requirement of a stoichiometric base, MeOH (not salt waste) formation as a byproduct, and the production of congested quaternary carbon centers.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
11
|
Devi R, Mukhopadhyay S, Jyoti Das A, Kumar Das S. Base-mediated synthesis of benzimidazole-fused 1,4-benzoxazepines via sequential intermolecular epoxide ring-opening/intramolecular SNAr reactions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Zhao R, Zeng BL, Jia WQ, Zhao HY, Shen LY, Wang XJ, Pan XD. LiCl-promoted amination of β-methoxy amides (γ-lactones). RSC Adv 2020; 10:34938-34942. [PMID: 35514391 PMCID: PMC9056935 DOI: 10.1039/d0ra07170f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
An efficient and mild method has been developed for the amination of β-methoxy amides (γ-lactones) including natural products michelolide, costunolide and parthenolide derivatives by using lithium chloride in good yields. This reaction is applicable to a wide range of substrates with good functional group tolerance. Mechanism studies show that the reactions undergo a LiCl promoted MeOH elimination from the substrates to form the corresponding α,β-unsaturated intermediates followed by the Michael addition of amines. The amination of β-methoxy amides (γ-lactones) including natural products michelolide, costunolide and parthenolide derivatives were first developed by using lithium chloride.![]()
Collapse
Affiliation(s)
- Ru Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Bing-Lin Zeng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Wen-Qiang Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Hong-Yi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Long-Ying Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Xiao-Jian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Xian-Dao Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China .,School of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 China
| |
Collapse
|
13
|
Efficient nickel(II) immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as a novel nanocatalyst for amination of heteroaryl carbamates and sulfamates through the cleavage of C-O bond. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Pal KB, Guo A, Das M, Báti G, Liu XW. Superbase-Catalyzed Stereo- and Regioselective Glycosylation with 2-Nitroglycals: Facile Access to 2-Amino-2-deoxy-O-glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
15
|
Hirao S, Yamashiro T, Kohira K, Mishima N, Abe T. 2,3-Dimethoxyindolines: a latent electrophile for SNAr reactions triggered by indium catalysts. Chem Commun (Camb) 2020; 56:5139-5142. [DOI: 10.1039/d0cc01210f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unprecedented utilization of 2,3-dimethoxyindolines (DiMeOINs) as a latent electrophile in regioselective In-catalyzed aromatic substitutions has been reported.
Collapse
Affiliation(s)
- Seiya Hirao
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Toshiki Yamashiro
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Kyouka Kohira
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Naoki Mishima
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| | - Takumi Abe
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Hokkaido 0610293
- Japan
| |
Collapse
|
16
|
Shigeno M, Nakamura R, Hayashi K, Nozawa-Kumada K, Kondo Y. Catalytic Amination of β-(Hetero)arylethyl Ethers by Phosphazene Base t-Bu-P4. Org Lett 2019; 21:6695-6699. [PMID: 31403305 DOI: 10.1021/acs.orglett.9b02309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the catalytic amination of β-(hetero)arylethyl ethers with amines using the organic superbase t-Bu-P4 to obtain β-(hetero)arylethylamines. The reaction has a broad substrate scope and allows the transformations of electron-deficient and electron-neutral β-(hetero)arylethyl ethers with various amines including pyrrole, N-alkylaniline, diphenylamine, aniline, indole, and indoline derivatives. Mechanistic studies indicate a two-reaction pathway of MeOH elimination from the substrate to form a (hetero)arylalkene followed by the hydroamination of the alkene.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Ryutaro Nakamura
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
17
|
Shigeno M, Hayashi K, Nozawa-Kumada K, Kondo Y. Organic Superbase t-Bu-P4 Catalyzes Amination of Methoxy(hetero)arenes. Org Lett 2019; 21:5505-5508. [PMID: 31264886 DOI: 10.1021/acs.orglett.9b01805] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that the organic superbase t-Bu-P4 efficiently catalyzes the amination of methoxy(hetero)arenes with amine nucleophiles such as aniline, indoline, and aminopyridine derivatives. This catalytic reaction is effective for the transformation of electron-deficient methoxyarenes possessing diverse functionalities (carbonyl, cyano, nitro, and halogen) as well as methoxyheteroarenes, including pyrazine, quinoline, isoquinoline, and pyridine derivatives. Intramolecular reactions provide six- and seven-membered ring cyclic amine products.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba, Sendai 980-8578 , Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba, Sendai 980-8578 , Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba, Sendai 980-8578 , Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , Aoba, Sendai 980-8578 , Japan
| |
Collapse
|
18
|
Fairley M, Davin L, Hernán-Gómez A, García-Álvarez J, O'Hara CT, Hevia E. s-Block cooperative catalysis: alkali metal magnesiate-catalysed cyclisation of alkynols. Chem Sci 2019; 10:5821-5831. [PMID: 31293771 PMCID: PMC6568277 DOI: 10.1039/c9sc01598a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Through mixed metal cooperativity, alkali metal magnesiates efficiently catalyse the cyclisation of alkynols.
Mixed s-block metal organometallic reagents have been successfully utilised in the catalytic intramolecular hydroalkoxylation of alkynols. This success has been attributed to the unique manner in which these reagents can overcome the challenges of the reaction: namely OH activation and coordination to and then addition across a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond. In order to optimise the reaction conditions and to garner vital catalytic system requirements, a series of alkali metal magnesiates were enlisted for the catalytic intramolecular hydroalkoxylation of 4-pentynol. In a prelude to the main investigation, the homometallic magnesium dialkyl reagent MgR2 (where R = CH2SiMe3) was utilised. This reagent was unsuccessful in cyclising the alcohol into 2-methylenetetrahydrofuran 2a or 5-methyl-2,3-dihydrofuran 2b, even in the presence of multidentate Lewis donor molecules such as N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA). Alkali metal magnesiates MIMgR3 (when MI = Li, Na or K) performed the cyclisation unsatisfactorily both in the absence/presence of N,N,N′,N′-tetramethylethylenediamine (TMEDA) or PMDETA. When higher-order magnesiates (i.e., MI2MgR4) were employed, in general a marked increase in yield was observed for MI = Na or K; however, the reactions were still sluggish with long reaction times (22–36 h). A major improvement in the catalytic activity of the magnesiates was observed when the crown ether molecule 15-crown-5 was combined with sodium magnesiate Na2MgR4(TMEDA)2 furnishing yields of 87% with 2a : 2b ratios of 95 : 5 after 5 h. Similar high yields of 88% with 2a : 2b ratios of 90 : 10 after 3 h were obtained combining 18-crown-6 with potassium magnesiate K2MgR4(PMDETA)2. Having optimised these systems, substrate scope was examined to probe the range and robustness of 18-crown-6/K2MgR4(PMDETA)2 as a catalyst. A wide series of alkynols, including terminal and internal alkynes which contain a variety of potentially reactive functional groups, were cyclised. In comparison to previously reported monometallic systems, bimetallic 18-crown-6/K2MgR4(PMDETA)2 displays enhanced reactivity towards internal alkynol-cyclisation. Kinetic studies revealed an inhibition effect of substrate on the catalysts via adduct formation and requiring dissociation prior to the rate limiting cyclisation step.
Collapse
Affiliation(s)
- Michael Fairley
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Laia Davin
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Alberto Hernán-Gómez
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica , Facultad de Química , Universidad de Oviedo , E-33071 Oviedo , Spain
| | - Charles T O'Hara
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| | - Eva Hevia
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Glasgow , G1 1XL , UK .
| |
Collapse
|