1
|
Liu Q, Kosaka W, Miyasaka H. Dynamic spin reordering in a hybrid layered ferrimagnet with intercalated biferrocenium radicals. Chem Sci 2024:d4sc04722b. [PMID: 39512922 PMCID: PMC11537288 DOI: 10.1039/d4sc04722b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Molecule-based hybrid layered magnets provide an ideal platform for investigating the long-range spin-ordering process in low-dimensional magnetic systems. Within this context, a promising area of research is spin-sandwiched hybrid layered magnets. These materials offer the potential to explore how the spin, which is sandwiched between magnetic layers, is influenced by the internal magnetic fields generated by the magnetic layers. Herein, we report a layered ferrimagnet with intercalated biferrocenium ([bifc]+) radicals, [bifc][{Ru2(2,3,5,6-F4ArCO2)4}2(TCNQF2)] (1, TCNQF2 = 2,5-difluorotetracyano-p-quinodimethane). The [{Ru2(2,3,5,6-F4ArCO2)4}2(TCNQF2)]- moiety acts as a ferrimagnetic layer with S T = 3/2, composed of a paddlewheel [Ru2 II,II(2,3,5,6-F4ArCO2)4] (2,3,5,6-F4ArCO2 - = 2,3,5,6-tetrafluorobenzoate) with S = 1 and 2,5-difluoro-7,7,8,8-tetracyanoquinodimethanate (TCNQF2˙-) units with S = 1/2 in a 2 : 1 ratio. The isostructural paramagnetic compound [bifc][{Rh2(2,3,5,6-F4ArCO2)4}2(TCNQF2)] (2) consisting of diamagnetic [Rh2 II,II(2,3,5,6-F4ArCO2)4] components was also synthesized. An investigation of the properties of 2 revealed minimal magnetic interaction between the [bifc]+ and TCNQF2˙- components. Compound 1 displayed long-range ferrimagnetic ordering at the Curie temperature of 105 K without any frequency dependence on alternating current (AC) susceptibility, due to the combination of predominant ferrimagnetic ordering within the layer and interlayer ferromagnetic dipole interactions. However, subsequent stepwise magnetic ordering involving a strong AC frequency dependence was observed upon further cooling. These dynamic behaviors are associated with the ordering of two types of anisotropic [bifc]+ spins between the ferrimagnetic layers, indicating that [bifc]+ spin ordering is sensitive to anisotropic internal magnetic fields generated by the ferrimagnetic layers.
Collapse
Affiliation(s)
- Qingxin Liu
- Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Arama-ki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Arama-ki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Arama-ki-Aza-Aoba Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
2
|
Nain S, Mukhopadhyaya A, Ali ME. Unravelling the Highest Magnetic Anisotropy Among all the nd-Shells in [WCp2]0 Metallocene. Inorg Chem 2024; 63:7401-7411. [PMID: 38578709 DOI: 10.1021/acs.inorgchem.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Single-molecule magnets (SMMs) with a large magnetization reversal barrier are predominated by the lanthanide systems due to their strong spin-orbit coupling (SOC). However, the transition metals have also emerged as potential contenders and the largest magnetic anisotropy has been identified for a cobalt system among any d-series-based SMMs (Bunting et al. Science 2018, 362, eaat7319). In this work, we have explored the magnetic anisotropy in highly axial ligand field systems of metallocene, having different d-subshell (3d4, 4d4, and 5d4). The wave function-based multireference methods including static and dynamic electron correlations have been employed to investigate the zero-field splitting (ZFS) parameters. Here, we report exceptionally large magnetic anisotropy for a 5d complex of [WCp2]0 with the highest energy barrier that is nearly twice as high as the previous record value for the Co complex. We have also observed that the axial ZFS parameter (D) is increasing down the group in the order of 3d < 4d < 5d, pertaining to a large SOC.
Collapse
Affiliation(s)
- Sakshi Nain
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Vieru V, Gómez-Coca S, Ruiz E, Chibotaru LF. Increasing the Magnetic Blocking Temperature of Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202303146. [PMID: 37539652 DOI: 10.1002/anie.202303146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.
Collapse
Affiliation(s)
- Veacheslav Vieru
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, 6229 EN, Maastricht, The Netherlands
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
| |
Collapse
|
4
|
Errulat D, Harriman KLM, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation. Nat Chem 2023:10.1038/s41557-023-01208-y. [PMID: 37231297 DOI: 10.1038/s41557-023-01208-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
The best-performing single-molecule magnets (SMMs) have historically relied on pseudoaxial ligands delocalized across several coordinated atoms. This coordination environment has been found to elicit strong magnetic anisotropy, but lanthanide-based SMMs with low coordination numbers have remained synthetically elusive species. Here we report a cationic 4f complex bearing only two bis-silylamide ligands, Yb(III)[{N(SiMePh2)2}2][Al{OC(CF3)3}4], which exhibits slow relaxation of its magnetization. The combination of the bulky silylamide ligands and weakly coordinating [Al{OC(CF3)3}4]- anion provides a sterically hindered environment that suitably stabilizes the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy. The resolution of the mJ states by luminescence spectroscopy is supported by ab initio calculations, which show a large ground-state splitting of approximately 1,850 cm-1. These results provide a facile route to access a bis-silylamido Yb(III) complex, and further underline the desirability of axially coordinated ligands with well-localized charges for high-performing SMMs.
Collapse
Affiliation(s)
- Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Katie L M Harriman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Briganti M, Serrano G, Poggini L, Sorrentino AL, Cortigiani B, de Camargo LC, Soares JF, Motta A, Caneschi A, Mannini M, Totti F, Sessoli R. Mixed-Sandwich Titanium(III) Qubits on Au(111): Electron Delocalization Ruled by Molecular Packing. NANO LETTERS 2022; 22:8626-8632. [PMID: 36256878 PMCID: PMC9650780 DOI: 10.1021/acs.nanolett.2c03161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Indexed: 06/15/2023]
Abstract
Organometallic sandwich complexes are versatile molecular systems that have been recently employed for single-molecule manipulation and spin sensing experiments. Among related organometallic compounds, the mixed-sandwich S = 1/2 complex (η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium, here [CpTi(cot)], has attracted interest as a spin qubit because of the long coherence time. Here the structural and chemical properties of [CpTi(cot)] on Au(111) are investigated at the monolayer level by experimental and computational methods. Scanning tunneling microscopy suggests that adsorption occurs in two molecular orientations, lying and standing, with a 3:1 ratio. XPS data evidence that a fraction of the molecules undergo partial electron transfer to gold, while our computational analysis suggests that only the standing molecules experience charge delocalization toward the surface. Such a phenomenon depends on intermolecular interactions that stabilize the molecular packing in the monolayer. This orientation-dependent molecule-surface hybridization opens exciting perspectives for selective control of the molecule-substrate spin delocalization in hybrid interfaces.
Collapse
Affiliation(s)
- Matteo Briganti
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Giulia Serrano
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Lorenzo Poggini
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Institute
for Chemistry of OrganoMetallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino (FI) Italy
| | - Andrea Luigi Sorrentino
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Brunetto Cortigiani
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Luana Carol de Camargo
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Jaísa Fernandes Soares
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Alessandro Motta
- “La
Sapienza” and INSTM Research Unit, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Caneschi
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Matteo Mannini
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Federico Totti
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Roberta Sessoli
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
6
|
Li RX, Sun HY, Liang HC, Yi C, Yao NT, Meng YS, Xiong J, Liu T, Zhu YY. Slow magnetic relaxation in mononuclear octa-coordinate Fe(II) and Co(II) complexes from a Bpybox ligand. Dalton Trans 2022; 51:8865-8873. [PMID: 35635033 DOI: 10.1039/d2dt00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 3d transition metal mononuclear complexes, [(FeL2)(ClO4)2]2·CH3CN (1) and (CoL2)(ClO4)2·2CH3CN (2), have been prepared from a rigid tetradentate bpybox (L = 6,6'-bis(2,5-dihydrooxazol-4-yl)-2,2'-bipyridine) ligand. Single crystal X-ray diffraction analyses together with the help of calculations show that both compounds are octa-coordinate. Direct current magnetic studies reveal their significant magnetic anisotropy. Impressively, field-induced relaxation of magnetism is observed in the two complexes and the apparent anisotropy barriers are 14.1 K for 1 and 21.6 K for 2, respectively. Theoretical calculations reveal that two Fe(II) centers in 1 have small negative D values of -4.897 and -4.825 cm-1 and relatively small E values of 0.646 and 0.830 cm-1, indicating a uniaxial magnetic anisotropy. In contrast, the D and E values in the Co(II) center of 2 are 46.42 cm-1 and 11.51 cm-1, featuring a rhombic anisotropy. This work demonstrates that field-induced slow magnetic relaxation in 3d transition metal complexes with high coordination numbers can be manipulated through rigid ligand design.
Collapse
Affiliation(s)
- Rui-Xia Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Cheng Yi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yuan-Yuan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
7
|
Juráková J, Šalitroš I. Co(II) single-ion magnets: synthesis, structure, and magnetic properties. MONATSHEFTE FUR CHEMIE 2022; 153:1001-1036. [PMID: 35615113 PMCID: PMC9123880 DOI: 10.1007/s00706-022-02920-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
Magnetoactive coordination compounds exhibiting bi- or multistability between two or more magnetic stable states present an attractive example of molecular switches. Currently, the research is focused on molecular nanomagnets, especially single molecule magnets (SMMs), which are molecules, where the slow relaxation of the magnetization based on the purely molecular origin is observed. Contrary to ferromagnets, the magnetic bistability of SMMs does not require intermolecular interactions, which makes them particularly interesting in terms of application potential, especially in the high-density storage of data. This paper aims to introduce the readers into a basic understanding of SMM behaviour, and furthermore, it provides an overview of the attractive Co(II) SMMs with emphasis on the relation between structural features, magnetic anisotropy, and slow relaxation of magnetization in tetra-, penta-, and hexacoordinate complexes. Graphical abstract
Collapse
Affiliation(s)
- Jana Juráková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, 81237 Slovakia
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
8
|
Zhou Z, McNeely J, Greenough J, Wei Z, Han H, Rouzières M, Rogachev AY, Clérac R, Petrukhina MA. Lanthanide-mediated tuning of electronic and magnetic properties in heterotrimetallic cyclooctatetraenyl multidecker self-assemblies. Chem Sci 2022; 13:3864-3874. [PMID: 35432895 PMCID: PMC8966735 DOI: 10.1039/d2sc00631f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT)3(THF)3] (Ln(iii) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P21/c space group with a slight compression of the unit cell from 3396.4(2) Å3 to 3373.2(4) Å3 along the series. All complexes exhibit a triple-decker structure having the Ln(iii) and K(i) ions sandwiched by three COT2- ligands with an end-bound {Ca2+(THF)3} moiety to form a non-linear (153.5°) arrangement of three different metals. The COT2- ligands act in a η8-mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K(i) and Ca(ii) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln(iii) ions. The magnetic property investigation of the [LnKCa(COT)3(THF)3] series (Ln(iii) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT)3(THF)3] in contrast to [ErKCa(COT)3(THF)3], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - James McNeely
- Department of Chemistry, Boston University Boston MA USA
| | - Joshua Greenough
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University Ithaca New York 14853 USA
| | - Mathieu Rouzières
- Univ. of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 F-33600 Pessac France
| | - Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology Chicago IL 60616 USA
| | - Rodolphe Clérac
- Univ. of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 F-33600 Pessac France
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| |
Collapse
|
9
|
Valigura D, Rajnák C, Titis J, Moncol J, Bieńko A, Boca R. Unusual Slow Magnetic Relaxation in a Mononuclear Copper(II) Complex. Dalton Trans 2022; 51:5612-5616. [DOI: 10.1039/d2dt00023g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexacoordinate Cu(II) complex with the {CuO4O’N} donor set shows an intermolecular π-πstacking owing to which a 1D-chain structure is formed. The DC magnetic data at low temperature is consistent...
Collapse
|
10
|
Amoza M, Maxwell L, Aliaga‐Alcalde N, Gómez‐Coca S, Ruiz E. Spin-Phonon Coupling and Slow-Magnetic Relaxation in Pristine Ferrocenium. Chemistry 2021; 27:16440-16447. [PMID: 34582589 PMCID: PMC9298439 DOI: 10.1002/chem.202102603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/23/2023]
Abstract
We report the spin dynamic properties of non-substituted ferrocenium complexes. Ferrocenium shows a field-induced single-molecule magnet behaviour in DMF solution while cobaltocene lacks slow spin relaxation neither in powder nor in solution. Multireference quantum mechanical calculations give a non-Aufbau orbital occupation for ferrocenium with small first excitation energy that agrees with the relatively large measured magnetic anisotropy for a transition metal S=1/2 system. The analysis of the spin relaxation shows an important participation of quantum tunnelling, Raman, direct and local-mode mechanisms which depend on temperature and the external field conditions. The calculation of spin-phonon coupling constants for the vibrational modes shows that the first vibrational mode, despite having a low spin-phonon constant, is the most efficient process for the spin relaxation at low temperatures. In such conditions, vibrational modes with higher spin-phonon coupling constants are not populated. Additionally, the vibrational energy of this first mode is in excellent agreement with the experimental fitted value obtained from the local-mode mechanism.
Collapse
Affiliation(s)
- Martín Amoza
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Lindley Maxwell
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
- Advanced Lithium and Industrial Minerals Research CenterUniversidad de AntofagastaAv. Universidad de Antofagasta02800AntofagastaChile
| | - Núria Aliaga‐Alcalde
- ICREA, Institució Catalana de Recerca i Estudis AvançatsPasseig, Passeig Lluis Companys 2308010BarcelonaSpain
- Institut de Ciència de Materials de Barcelona ICMAB-CSIC, Campus UAB08193BellaterraCataloniaSpain
| | - Silvia Gómez‐Coca
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica andInstitut de Recerca de Química Teòrica i ComputacionalUniversitat de BarcelonaDiagonal 64508028BarcelonaSpain
| |
Collapse
|
11
|
Generation of a Hetero Spin Complex from Iron(II) Iodide with Redox Active Acenaphthene-1,2-Diimine. Molecules 2021; 26:molecules26102998. [PMID: 34070061 PMCID: PMC8158106 DOI: 10.3390/molecules26102998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
The reaction of the redox active 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) and iron(II) iodide in acetonitrile led to a new complex [(dpp-BIAN)FeIII2] (1). Molecular structure of 1 was determined by the single crystal X-ray diffraction analysis. The spin state of the iron cation in complex 1 at room temperature and the magnetic behavior of 1 in the temperature range of 2–300 K were studied using Mossbauer spectroscopy and magnetic susceptibility measurements, respectively. The neutral character of dpp-BIAN in 1 was confirmed by IR and UV spectroscopy. The electrochemistry of 1 was studied in solution and solid state using cyclic voltammetry. The generation of the radical anion form of the dpp-BIAN ligand upon reduction of 1 in a CH2Cl2 solution was monitored by EPR spectroscopy.
Collapse
|
12
|
Winkler M, Schnierle M, Ehrlich F, Mehnert KI, Hunger D, Sheveleva AM, Burkhardt L, Bauer M, Tuna F, Ringenberg MR, van Slageren J. Electronic Structure of a Diiron Complex: A Multitechnique Experimental Study of [(dppf)Fe(CO) 3] +/0. Inorg Chem 2021; 60:2856-2865. [PMID: 33569942 DOI: 10.1021/acs.inorgchem.0c03259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we explore the electronic structure of the diiron complex [(dppf)Fe(CO)3]0/+ [10/+; dppf = 1,1'-bis(diphenylphosphino)ferrocene] in two oxidation states by an advanced multitechnique experimental approach. A combination of magnetic circular dichroism, X-ray absorption and emission, high-frequency electron paramagnetic resonance (EPR), and Mössbauer spectroscopies is used to establish that oxidation of 10 occurs on the carbonyl iron ion, resulting in a low-spin iron(I) ion. It is shown that an unequivocal result is obtained by combining several methods. Compound 1+ displays slow spin dynamics, which is used here to study its geometric structure by means of pulsed EPR methods. Surprisingly, these data show an association of the tetrakis[3,5-bis(trifluoromethylphenyl)]borate counterion with 1+.
Collapse
Affiliation(s)
- Mario Winkler
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Marc Schnierle
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Felix Ehrlich
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Kim-Isabelle Mehnert
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Alena M Sheveleva
- Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design, Paderborn University, Warburger Strasse 100, Paderborn 33098, Germany
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design, Paderborn University, Warburger Strasse 100, Paderborn 33098, Germany
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mark R Ringenberg
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
13
|
Korchagin DV, Ivakhnenko EP, Demidov OP, Akimov AV, Morgunov RB, Starikov AG, Palii AV, Minkin VI, Aldoshin SM. Field supported slow magnetic relaxation in a quasi-one-dimensional copper( ii) complex with a pentaheterocyclic triphenodioxazine. NEW J CHEM 2021. [DOI: 10.1039/d1nj03217h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new copper(ii) complex (I) was obtained by the reaction of a sterically crowded 2,4-di-(tert-butyl)-9-chloro-benzo[5,6][1,4]oxazine[2,3-b]phenoxazine bridging ligand with Cu(ii) hexafluoroacetylacetonate.
Collapse
Affiliation(s)
- D. V. Korchagin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - E. P. Ivakhnenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki St., 344090 Rostov on Don, Russia
| | - O. P. Demidov
- North Caucasus Federal University, 1 Pushkin st., Stavropol, 355017, Russian Federation
| | - A. V. Akimov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - R. B. Morgunov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - A. G. Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki St., 344090 Rostov on Don, Russia
| | - A. V. Palii
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - V. I. Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki St., 344090 Rostov on Don, Russia
| | - S. M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., 142432 Chernogolovka, Russia
| |
Collapse
|
14
|
de Camargo LC, Briganti M, Santana FS, Stinghen D, Ribeiro RR, Nunes GG, Soares JF, Salvadori E, Chiesa M, Benci S, Torre R, Sorace L, Totti F, Sessoli R. Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case. Angew Chem Int Ed Engl 2020; 60:2588-2593. [PMID: 33051985 DOI: 10.1002/anie.202009634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/12/2022]
Abstract
The coherence time of the 17-electron, mixed sandwich complex [CpTi(cot)], (η8 -cyclooctatetraene)(η5 -cyclopentadienyl)titanium, reaches 34 μs at 4.5 K in a frozen deuterated toluene solution. This is a remarkable coherence time for a highly protonated molecule. The intramolecular distances between the Ti and H atoms provide a good compromise between instantaneous and spin diffusion sources of decoherence. Ab initio calculations at the molecular and crystal packing levels reveal that the characteristic low-energy ring rotations of the sandwich framework do not yield a too detrimental spin-lattice relaxation because of their small spin-phonon coupling. The volatility of [CpTi(cot)] and the accessibility of the semi-occupied, non-bonding d z 2 orbital make this neutral compound an ideal candidate for single-qubit addressing on surface and quantum sensing in combination with scanning probe microscopy.
Collapse
Affiliation(s)
- Luana C de Camargo
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Matteo Briganti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.,Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Francielli S Santana
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Danilo Stinghen
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Ronny R Ribeiro
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Giovana G Nunes
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Jaísa F Soares
- Department of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900, Curitiba-PR, Brazil
| | - Enrico Salvadori
- Department of Chemistry, University of Turin, Via Giuria 7, 10125, Torino, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Turin, Via Giuria 7, 10125, Torino, Italy
| | - Stefano Benci
- Laboratory for Nonlinear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Renato Torre
- Laboratory for Nonlinear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,Department of Physics and Astrophysics, University of Florence, Via G.Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Lorenzo Sorace
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Federico Totti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Camargo LC, Briganti M, Santana FS, Stinghen D, Ribeiro RR, Nunes GG, Soares JF, Salvadori E, Chiesa M, Benci S, Torre R, Sorace L, Totti F, Sessoli R. Exploring the Organometallic Route to Molecular Spin Qubits: The [CpTi(cot)] Case. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Luana C. Camargo
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Matteo Briganti
- Department of Chemistry “U. Schiff” and INSTM UdR Firenze University of Florence Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Francielli S. Santana
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Danilo Stinghen
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Ronny R. Ribeiro
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Giovana G. Nunes
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Jaísa F. Soares
- Department of Chemistry Federal University of Parana Centro Politecnico, Jardim das Americas 81530-900 Curitiba-PR Brazil
| | - Enrico Salvadori
- Department of Chemistry University of Turin Via Giuria 7 10125 Torino Italy
| | - Mario Chiesa
- Department of Chemistry University of Turin Via Giuria 7 10125 Torino Italy
| | - Stefano Benci
- Laboratory for Nonlinear Spectroscopy University of Florence Via Nello Carrara 1 50019 Sesto Fiorentino Italy
| | - Renato Torre
- Laboratory for Nonlinear Spectroscopy University of Florence Via Nello Carrara 1 50019 Sesto Fiorentino Italy
- Department of Physics and Astrophysics University of Florence Via G.Sansone 1 50019 Sesto Fiorentino Italy
| | - Lorenzo Sorace
- Department of Chemistry “U. Schiff” and INSTM UdR Firenze University of Florence Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Federico Totti
- Department of Chemistry “U. Schiff” and INSTM UdR Firenze University of Florence Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Roberta Sessoli
- Department of Chemistry “U. Schiff” and INSTM UdR Firenze University of Florence Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
- ICCOM-CNR via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| |
Collapse
|
16
|
Asymmetric Dinuclear Lanthanide(III) Complexes from the Use of a Ligand Derived from 2-Acetylpyridine and Picolinoylhydrazide: Synthetic, Structural and Magnetic Studies. Molecules 2020; 25:molecules25143153. [PMID: 32664199 PMCID: PMC7397153 DOI: 10.3390/molecules25143153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 11/17/2022] Open
Abstract
A family of four Ln(III) complexes has been synthesized with the general formula [Ln2(NO3)4(L)2(S)] (Ln = Gd, Tb, Er, and S = H2O; 1, 2 and 4, respectively/Ln = Dy, S = MeOH, complex 3), where HL is the flexible ditopic ligand N’-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide. The structures of isostructural MeOH/H2O solvates of these complexes were determined by single-crystal X-ray diffraction. The two LnIII ions are doubly bridged by the deprotonated oxygen atoms of two “head-to-head” 2.21011 (Harris notation) L¯ ligands, forming a central, nearly rhombic {LnIII2(μ-OR)2}4+ core. Two bidentate chelating nitrato groups complete a sphenocoronal 10-coordination at one metal ion, while two bidentate chelating nitrato groups and one solvent molecule (H2O or MeOH) complete a spherical capped square antiprismatic 9-coordination at the other. The structures are critically compared with those of other, previously reported metal complexes of HL or L¯. The IR spectra of 1–4 are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The f-f transitions in the solid-state (diffuse reflectance) spectra of the Tb(III), Dy(III), and Er(III) complexes have been fully assigned in the UV/Vis and near-IR regions. Magnetic susceptibility studies in the 1.85–300 K range reveal the presence of weak, intramolecular GdIII∙∙∙GdIII antiferromagnetic exchange interactions in 1 [J/kB = −0.020(6) K based on the spin Hamiltonian Ĥ = −2J(ŜGd1∙ ŜGd2)] and probably weak antiferromagnetic LnIII∙∙∙LnIII exchange interactions in 2–4. Ac susceptibility measurements in zero dc field do not show frequency dependent out-of-phase signals, and this experimental fact is discussed for 3 in terms of the magnetic anisotropy axis for each DyIII center and the oblate electron density of this metal ion. Complexes 3 and 4 are Single-Molecule Magnets (SMMs) and this behavior is optimally observed under external dc fields of 600 and 1000 Oe, respectively. The magnetization relaxation pathways are discussed and a satisfactory fit of the temperature and field dependencies of the relaxation time τ was achieved considering a model that employs Raman, direct, and Orbach relaxation mechanisms.
Collapse
|
17
|
Zhong F, Yang M, Ding M, Jia C. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Front Chem 2020; 8:451. [PMID: 32637392 PMCID: PMC7317337 DOI: 10.3389/fchem.2020.00451] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
This is a critical review of the advances in the molecular design of organic electroactive molecules, which are the key components for redox flow batteries (RFBs). As a large-scale energy storage system with great potential, the redox flow battery has been attracting increasing attention in the last few decades. The redox molecules, which bridge the interconversion between chemical energy and electric energy for RFBs, have generated wide interest in many fields such as energy storage, functional materials, and synthetic chemistry. The most widely used electroactive molecules are inorganic metal ions, most of which are scarce and expensive, hindering the broad deployment of RFBs. Thus, there is an urgent motivation to exploit novel cost-effective electroactive molecules for the commercialization of RFBs. RFBs based on organic electroactive molecules such as quinones and nitroxide radical derivatives have been studied and have been a hot topic of research due to their inherent merits in the last decade. However, few comprehensive summaries regarding the molecular design of organic electroactive molecules have been published. Herein, the latest progress and challenges of organic electroactive molecules in both non-aqueous and aqueous RFBs are reviewed, and future perspectives are put forward for further developments of RFBs as well as other electrochemical energy storage systems.
Collapse
Affiliation(s)
- Fangfang Zhong
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, China
| | - Minghui Yang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, China.,National Engineering Laboratory of Highway Maintenance Technology, School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, China.,National Engineering Laboratory of Highway Maintenance Technology, School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China
| |
Collapse
|
18
|
Li J, Wu S, Su S, Kanegawa S, Sato O. Manipulating Slow Magnetic Relaxation by Light in a Charge Transfer {Fe
2
Co} Complex. Chemistry 2020; 26:3259-3263. [DOI: 10.1002/chem.202000154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/21/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Junqiu Li
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shuqi Wu
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shengqun Su
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|