1
|
Todkari IA, Chaudhary P, Kulkarni MJ, Ganesh KN. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Org Biomol Chem 2024; 22:6810-6821. [PMID: 39113548 DOI: 10.1039/d4ob00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nucleic acids (DNA and RNA) can form diverse secondary structures ranging from hairpins to duplex, triplex, G4-tetraplex and C4-i-motifs. Many of the DNA analogues designed as antisense oligonucleotides (ASO) are also adept at embracing such folded structures, although to different extents with altered stabilities. One such analogue, peptide nucleic acid (PNA), which is uncharged and achiral, forms hybrids with complementary DNA/RNA with greater stability and specificity than DNA:DNA/RNA hybrids. Like DNAs, these single-stranded PNAs can form PNA:DNA/RNA duplexes, PNA:DNA:PNA triplexes, PNA-G4 tetraplexes and PNA-C4-i-motifs. We have recently designed Janus-like bimodal PNAs endowed with two different nucleobase sequences on either side of a single aminoethylglycyl (aeg) PNA backbone and shown that these can simultaneously bind to two complementary DNA sequences from both faces of PNA. This leads to the formation of supramolecular polyplexes such as double duplexes, triple duplexes and triplexes of double duplexes with appropriate complementary DNA/RNA. Herein, we demonstrate that Janus/bimodal PNA with a poly G-sequence on the triazole side of the PNA backbone and mixed bases on the t-amide side, templates the initial formation of a (PNA-G5)4 tetraplex (triazole side), followed by the formation of a PNA:DNA duplex (t-amide side). Such a polyplex shows synergistic overall stabilisation compared to the isolated duplexes/quadruplex. The assembly of polyplexes with a shared backbone for duplexes and tetraplexes is programmable and may have potential applications in the self-assembly of nucleic acid nano- and origami structures. It is also shown that Janus PNAs enter the cells better than the standard aeg-PNA oligomers, and hence have implications for in vivo applications as well.
Collapse
Affiliation(s)
- Iranna Annappa Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Preeti Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | - Mahesh J Kulkarni
- Division of Biochemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411008, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India.
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India
| |
Collapse
|
2
|
Madaoui M, Datta D, Wassarman K, Zlatev I, Egli M, Ross BS, Manoharan M. A Chemical Approach to Introduce 2,6-Diaminopurine and 2-Aminoadenine Conjugates into Oligonucleotides without Need for Protecting Groups. Org Lett 2022; 24:6111-6116. [PMID: 35973215 PMCID: PMC9425559 DOI: 10.1021/acs.orglett.2c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a simple, postsynthetic strategy for synthesis
of oligonucleotides
containing 2,6-diaminopurine nucleotides and 2-aminoadenine conjugates
using 2-fluoro-6-amino-adenosine. The strategy allows introduction
of 2,6-diaminopurine and other 2-amino group-containing ligands. The
strongly electronegative 2-fluoro deactivates 6-NH2 obviating
the need for any protecting group on adenine, and simple aromatic
nucleophilic substitution of fluorine makes reaction with aqueous
NH3 or R-NH2 feasible at the 2-position.
Collapse
Affiliation(s)
- Mimouna Madaoui
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bruce S Ross
- Ross Chemistry Consulting, El Granada, California 94018, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Beck KM, Nielsen P. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. J Org Chem 2022; 87:5113-5124. [PMID: 35363467 DOI: 10.1021/acs.joc.1c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the use of modified nucleotides, synthetic nucleic acids have found several fields of application within biotechnology and in the pharmaceutical industry. We have previously introduced nucleotides with an additional functional nucleobase linked to C2' of arabinonucleotides (BX). These double-headed nucleotides fit neatly into DNA·DNA duplexes, where they can replace the corresponding natural dinucleotides and thus condense the molecular information. Here, we introduce a 2'-deoxy version of the BX design with inversion of the C2' stereochemistry (dSBX) with the aim of obtaining improved RNA recognition. Specifically, dSBX analogues with cytosine or isocytosine attached to C2' of 2'-deoxyuridine (dSUC and dSUiC) were synthesized and evaluated in duplexes. Whereas the dSBX design did not outperform the BX design in terms of mimicking dinucleotides in nucleic acid duplexes, it was able to engage in reverse Watson-Crick pairing using its 2'-base. This was evident from the ability of the dSUC cytosine to form stable mis-matching base pairs with opposite cytosines identified as hemiprotonated C·C+ pairs. Furthermore, specific base-pairing with guanine was only observed for the isocytosine-bearing dSUiC monomer. Very stable duplexes were obtained with dSUC/iC monomers in each strand indicating that fully modified double-headed nucleic acid sequences could be based on the dSBX design.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
4
|
Beck KM, Pham RL, Nanim RA, Laustsen A, Nielsen P. Double‐Headed Nucleotides with Increased Base‐Pairing Affinity and Specificity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Rita A. Nanim
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Anders Laustsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
5
|
Debreczeni N, Bege M, Herczeg M, Bereczki I, Batta G, Herczegh P, Borbás A. Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Org Biomol Chem 2021; 19:8711-8721. [PMID: 34586122 DOI: 10.1039/d1ob01174j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polyanionic phosphodiester backbone of nucleic acids contributes to high nuclease sensitivity and low cellular uptake and is therefore a major obstacle to the biological application of native oligonucleotides. Backbone modifications, particularly charge alterations is a proven strategy to provide artificial oligonucleotides with improved properties. Here, we describe the synthesis of a new type of oligonucleotide analogues consisting of a morpholino and a ribo- or deoxyribonucleoside in which the 5'-amino group of the nucleoside unit provides the nitrogen of the morpholine ring. The synthetic protocol is compatible with trityl and dimethoxytrityl protecting groups and azido functionality, and was extended to the synthesis of higher oligomers. The chimeras are positively charged in aqueous medium, due to the N-alkylated tertiary amine structure of the morpholino unit.
Collapse
Affiliation(s)
- Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Doctoral School of Chemistry, University of Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
| | - Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Institute of Healthcare Industry, University of Debrecen, H-4032, Debrecen, Nagyerdei körút 98, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, UD, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- Research Group for Oligosaccharide Chemistry of HAS, UD, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
- National Virology Laboratory, Szentágothai Research Centre, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
6
|
Beck KM, Sharma PK, Hornum M, Risgaard NA, Nielsen P. Double-headed nucleic acids condense the molecular information of DNA to half the number of nucleotides. Chem Commun (Camb) 2021; 57:9128-9131. [PMID: 34498649 DOI: 10.1039/d1cc03539h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleotide monomers that hold two nucleobases each, i.e. double-headed nucleotides, have been shown to form two sets of functional Watson-Crick base pairs when incorporated into dsDNA, and they hereby behave as dinucleotides. To form the basis for fully modified double-headed nucleic acids (DhNA), we have prepared three new DhNA monomers and can now demonstrate that the molecular information of 10 Watson-Crick base pairs can be condensed to highly stable 5-mer DhNA duplexes.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Nikolaj A Risgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| |
Collapse
|
7
|
Bhingardeve P, Jain P, Ganesh KN. Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl Cγ( S/ R)-Bimodal Peptide Nucleic Acids with dA 8/dG 6 and the Cell Permeability of Bimodal Peptide Nucleic Acids. ACS OMEGA 2021; 6:19757-19770. [PMID: 34368563 PMCID: PMC8340421 DOI: 10.1021/acsomega.1c02451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/05/2021] [Indexed: 05/08/2023]
Abstract
Peptide nucleic acids (PNAs) are analogues of DNA with a neutral acyclic polyamide backbone containing nucleobases attached through a t-amide link on repeating units of aminoethylglycine (aeg). They bind to complementary DNA or RNA in a sequence-specific manner to form duplexes with higher stablity than DNA:DNA and DNA:RNA hybrids. We have recently explored a new type of PNA termed bimodal PNA (bm-PNA) designed with two nucleobases per aeg repeating unit of PNA oligomer and attached at Cα or Cγ of each aeg unit through a spacer sidechain. We demonstrated that Cγ-bimodal PNA oligomers with mixed nucleobase sequences bind concurrently two different complementary DNAs, forming double duplexes, one from each t-amide and Cγ face, sharing a common PNA backbone. In such bm-PNA:DNA ternary complexes, the two duplexes show higher thermal stability than individual duplexes. Herein, we show that Cγ(S/R)-bimodal PNAs with homothymines (T8) on a t-amide face and homocytosine (C6) on a Cγ-face form a conjoined pentameric complex consisting of a triplex (bm-PNA-T8)2:dA8 and two duplexes of bm-PNA-C6:dG6. The pentameric complex [dG6:Cγ(S/R)-bm-PNA:dA8:Cγ(S/R)-bm-PNA:dG6] exhibits higher thermal stability than the individual triplex and duplex, with Cγ(S)-bm-PNA complexes being more stable than Cγ(R)-bm-PNA complexes. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-order assemblies with DNA and RNA. The Cγ(S/R)-bimodal PNAs are shown to enter MCF7 and NIH 3T3 cells and exhibit low toxicity to cells.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Prashant Jain
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Indian
Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
8
|
Verma V, Maity J, Maikhuri VK, Sharma R, Ganguly HK, Prasad AK. Double-headed nucleosides: Synthesis and applications. Beilstein J Org Chem 2021; 17:1392-1439. [PMID: 34194579 PMCID: PMC8204177 DOI: 10.3762/bjoc.17.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Double-headed nucleoside monomers have immense applications for studying secondary nucleic acid structures. They are also well-known as antimicrobial agents. This review article accounts for the synthetic methodologies and the biological applications of double-headed nucleosides.
Collapse
Affiliation(s)
- Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi-110 007, India
| | - Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Ritika Sharma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata-700 054, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
| |
Collapse
|
9
|
Beck KM, Ruder L, Nicolai TS, Pham RL, Risgaard NA, Hornum M, Nielsen P. Double‐Headed Nucleotides with Non‐Native Nucleobases: Synthesis and Duplex Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Linette Ruder
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Tine S. Nicolai
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Nikolaj A. Risgaard
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Mick Hornum
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
10
|
Mishra UK, Sanghvi YS, Egli M, Ramesh NG. Supramolecular Architecture through Self-Organization of Janus-Faced Homoazanucleosides. J Org Chem 2021; 86:367-378. [PMID: 33284627 DOI: 10.1021/acs.joc.0c02140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Design of Janus-faced or double-headed homoazanucleosides with the possibility to undergo self-organization through base pairing has been conceptualized and accomplished. The synthetic strategy demonstrates the unique ability to introduce two similar or complementary nucleobases on opposite arms of a chiral polyhydroxypyrrolidine while also ensuring that their faces are anti to each other to allow only intermolecular interactions between the nucleobases, an essential requisite for self-assembly. Single-crystal X-ray structures were determined for all three types of homoazanucleosides, one possessing two adenine molecules, the other with two thymine moieties, and the third containing both adenine and thymine. The crystal structures of all three display noncovalent interactions, including Watson-Crick base pairing, Hoogsteen H-bonding, and π-π stacking, resulting in unusual supramolecular patterns. The most striking supramolecular motif among them, which emerged from the crystal structure of the homoazanucleoside containing both adenine and thymine, is a left-handed helix formed through Watson-Crick pairing between nucleobases. The present study thus forms a prelude to the design of Janus-faced building blocks to establish helical pillars as well as lateral branches that together define a three-dimensional (3D) lattice. The ready accessibility of these molecules is expected to spur the next generation of discoveries in the design of functional nanomaterials.
Collapse
Affiliation(s)
- Umesh K Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
12
|
Gupta MK, Madhanagopal BR, Ganesh KN. Peptide Nucleic Acid with Double Face: Homothymine–Homocytosine Bimodal Cα-PNA (bm-Cα-PNA) Forms a Double Duplex of the bm-PNA2:DNA Triplex. J Org Chem 2020; 86:414-428. [DOI: 10.1021/acs.joc.0c02158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Bharath Raj Madhanagopal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| | - Krishna N. Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Tirupati 517507, India
| |
Collapse
|
13
|
Bhingardeve P, Madhanagopal BR, Ganesh KN. Cγ( S/ R)-Bimodal Peptide Nucleic Acids (Cγ- bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. J Org Chem 2020; 85:13680-13693. [PMID: 32985197 DOI: 10.1021/acs.joc.0c01853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Collapse
Affiliation(s)
- Pramod Bhingardeve
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bharath Raj Madhanagopal
- Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India
| |
Collapse
|
14
|
Beck KM, Krogh MB, Hornum M, Ludford PT, Tor Y, Nielsen P. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Org Biomol Chem 2020; 18:7213-7223. [PMID: 32909574 PMCID: PMC7517788 DOI: 10.1039/d0ob01426e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Xeno nucleic acids (XNAs) are artificial genetic systems based on sugar-modified nucleotides. Herein, we investigate double-headed nucleotides as a new XNA. A new monomer, AT, is presented, and together with previous double-headed nucleotide monomers, new nucleic acid motifs consisting of up to five consecutive A·T base pairs have been obtained. Sections composed entirely of double-headed nucleotides are well-tolerated within a DNA duplex and can condense the genetic information. For instance, a 13-mer duplex is condensed to an 11-mer modified duplex containing four double-headed nucleotides while simultaneously improving duplex thermal stability with +14.0 °C. Also, the transfer of information from double-headed to natural nucleotides by DNA polymerases has been examined. The first double-headed nucleoside triphosphate was prepared but could not be recognized and incorporated by the tested DNA polymerases. On the other hand, it proved possible for Therminator DNA polymerase to transfer the information of a double-headed nucleotide in a template sequence to natural DNA under controlled conditions.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Marie B Krogh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|