1
|
Šrut A, Lear BJ, Krewald V. The Marcus dimension: identifying the nuclear coordinate for electron transfer from ab initio calculations. Chem Sci 2023; 14:9213-9225. [PMID: 37655015 PMCID: PMC10466304 DOI: 10.1039/d3sc01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
The Marcus model forms the foundation for all modern discussion of electron transfer (ET). In this model, ET results in a change in diabatic potential energy surfaces, separated along an ET nuclear coordinate. This coordinate accounts for all nuclear motion that promotes electron transfer. It is usually assumed to be dominated by a collective asymmetric vibrational motion of the redox sites involved in the ET. However, this coordinate is rarely quantitatively specified. Instead, it remains a nebulous concept, rather than a tool for gaining true insight into the ET pathway. Herein, we describe an ab initio approach for quantifying the ET coordinate and demonstrate it for a series of dinitroradical anions. Using sampling methods at finite temperature combined with density functional theory calculations, we find that the electron transfer can be followed using the energy separation between potential energy surfaces and the extent of electron localization. The precise nuclear motion that leads to electron transfer is then obtained as a linear combination of normal modes. Once the coordinate is identified, we find that evolution along it results in a change in diabatic state and optical excitation energy, as predicted by the Marcus model. Thus, we conclude that a single dimension of the electron transfer described in Marcus-Hush theory can be described as a well-defined nuclear motion. Importantly, our approach allows the separation of the intrinsic electron transfer coordinate from other structural relaxations and environmental influences. Furthermore, the barrier separating the adiabatic minima was found to be sufficiently thin to enable heavy-atom tunneling in the ET process.
Collapse
Affiliation(s)
- Adam Šrut
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University University Park PA 16802 USA
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
2
|
Harrison DP, Grotjahn R, Naher M, Ghazvini SMBH, Mazzucato DM, Korb M, Moggach SA, Lambert C, Kaupp M, Low PJ. Quantum Interference in Mixed-Valence Complexes: Tuning Electronic Coupling Through Substituent Effects. Angew Chem Int Ed Engl 2022; 61:e202211000. [PMID: 36031588 PMCID: PMC9828041 DOI: 10.1002/anie.202211000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/12/2023]
Abstract
Whilst 2- or 5-OMe groups on the bridging phenylene ring in [{Cp*(dppe)RuC≡C}2 (μ-1,3-C6 H4 )]+ have little influence on the electronic structure of this weakly coupled mixed-valence complex, a 4-OMe substituent enhances ground state electron delocalization, and increases the intensity of the IVCT transition. Vibrational frequency and TDDFT calculations (LH20t-D3(BJ), def2-SVP, COSMO (CH2 Cl2 )) on ([{Cp*(dppe)RuC≡C}2 (μ-1,3-C6 H3 -n-OMe)]+ (n=2, 4, 5) models are in excellent agreement with the experimental results. The stronger ground state coupling is attributed to the change in composition of the β-HOSO brought about by the 4-OMe group, which is ortho or para to each of the metal fragments. The intensity of the IVCT transition increases with the greater overlap of the β-HOSO and β-LUSO, whilst the relative phases of the β-HOSO and β-LUSO in the 4-OMe substituted complex are consistent with predictions of constructive quantum interference from molecular circuit rules.
Collapse
Affiliation(s)
- Daniel P. Harrison
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Robin Grotjahn
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- Present address: Department of ChemistryUniversity of California, Irvine1102 Natural Science IIIrvineCA 92697-2025USA
| | - Masnun Naher
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Seyed M. B. H. Ghazvini
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Daniel M. Mazzucato
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Marcus Korb
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Stephen A. Moggach
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Colin Lambert
- Department of PhysicsUniversity of LancasterLancasterLA1 4YBUK
| | - Martin Kaupp
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Paul J. Low
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| |
Collapse
|
3
|
Safari P, Gückel S, Gluyas JBG, Moggach SA, Kaupp M, Low PJ. The Use of Bridging Ligand Substituents to Bias the Population of Localized and Delocalized Mixed‐Valence Conformers in Solution. Chemistry 2022; 28:e202200926. [PMID: 35642131 PMCID: PMC9401031 DOI: 10.1002/chem.202200926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Parvin Safari
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Simon Gückel
- Institut für Chemie Theoretische Chemie/Quantenchemie Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Josef B. G. Gluyas
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Paul J. Low
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| |
Collapse
|
4
|
Grotjahn R, Kaupp M. A Look at Real‐World Transition‐Metal Thermochemistry and Kinetics with Local Hybrid Functionals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| | - Martin Kaupp
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| |
Collapse
|
5
|
Jiang P, Yang X, Cao N, Zhu X, Zhang F, Liu SH, Ou YP. Tuning iron-amine electronic coupling by different aromatic bridges based on ferrocene-ethynyl-triarylamine systems. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Grotjahn R, Kaupp M. Reliable TDDFT Protocol Based on a Local Hybrid Functional for the Prediction of Vibronic Phosphorescence Spectra Applied to Tris(2,2'-bipyridine)-Metal Complexes. J Phys Chem A 2021; 125:7099-7110. [PMID: 34370482 DOI: 10.1021/acs.jpca.1c05101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient computational protocol for the prediction of vibrationally resolved phosphorescence spectra is developed and validated for five tris(2,2'-bipyridine)-metal complexes ([M(bpy)3]n+, where M = Zn, Ru, Rh, Os, Ir). The outstanding feature of this protocol is the use of full linear-response time-dependent density functional theory (TDDFT) for the excited-state triplet calculation, i.e., the commonly seen strategies employing the Tamm-Dancoff approximation (TDA) or unrestricted density functional theory (DFT) calculations for the T1 state are not needed. This is achieved by the use of a local hybrid functional (LH12ct-SsirPW92) that features a real-space dependent admixture of exact exchange governed by a local mixing function. The excellent performance of this LH for triplet excitation energies known from previous studies transfers to a remarkable mean absolute error of 0.06 eV for the phosphorescence 0-0 energies investigated herein, while the popular B3PW91 functional gives an error of 0.27 eV in TDDFT and 0.09 eV in unrestricted DFT calculations, respectively. The advantages of the local hybrid are particularly apparent for excited states with a mixed-valence character. The influence of spin-orbit coupling was found to be significant for [Os(bpy)3]2+ red-shifting the 0-0 energy for phosphorescence by 0.17 eV, while the effect is negligible for the other complexes (<0.03 eV). The influence of the basis-set and integration-grid sizes is evaluated, and a computationally lighter protocol is validated that leads to drastic savings in computation time with negligible loss in accuracy.
Collapse
Affiliation(s)
- Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
7
|
Gückel S, Safari P, Bagher Hosseini Ghazvini SM, Hall MR, Gluyas JBG, Kaupp M, Low PJ. Iron Versus Ruthenium: Evidence for the Distinct Differences in the Electronic Structures of Hexa-1,3,5-triyn-1,6-diyl-bridged Complexes [Cp*(dppe)M}{μ-(C≡C)3}{M(dppe)Cp*}]+ (M = Fe, Ru). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Simon Gückel
- Institut für Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Parvin Safari
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | | | - Michael R. Hall
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Josef B. G. Gluyas
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Paul J. Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| |
Collapse
|
8
|
Harrison DP, Kumar VJ, Noppers JN, Gluyas JBG, Sobolev AN, Moggach SA, Low PJ. Iron vs. ruthenium: syntheses, structures and IR spectroelectrochemical characterisation of half-sandwich Group 8 acetylide complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj03093g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A synthetic ‘trick’ affording complexes [M(CCR)(dppe)Cp′] (M = Fe, Ru) in high purity directly from the reaction vessel is described.
Collapse
Affiliation(s)
- Daniel P. Harrison
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Varshini J. Kumar
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Johanna N. Noppers
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Josef B. G. Gluyas
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Stephen A. Moggach
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Paul J. Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
9
|
Ludwig S, Helmdach K, Hüttenschmidt M, Oberem E, Rabeah J, Villinger A, Ludwig R, Seidel WW. Metal/Metal Redox Isomerism Governed by Configuration. Chemistry 2020; 26:16811-16817. [PMID: 32648996 PMCID: PMC7756430 DOI: 10.1002/chem.202003120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/05/2022]
Abstract
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side‐on carbon P,S‐chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like‐isomer is oxidized at W while the unlike‐isomer is oxidized at Ru, which is proven by IR, NIR and EPR‐spectroscopy supported by spectro‐electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)‐(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Kai Helmdach
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Elisabeth Oberem
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Ralf Ludwig
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| |
Collapse
|
10
|
Grotjahn R, Lauter GJ, Haasler M, Kaupp M. Evaluation of Local Hybrid Functionals for Electric Properties: Dipole Moments and Static and Dynamic Polarizabilities. J Phys Chem A 2020; 124:8346-8358. [DOI: 10.1021/acs.jpca.0c06939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Robin Grotjahn
- Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Gregor J. Lauter
- Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Matthias Haasler
- Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Martin Kaupp
- Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Institut für Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany
| |
Collapse
|
11
|
Haasler M, Maier TM, Grotjahn R, Gückel S, Arbuznikov AV, Kaupp M. A Local Hybrid Functional with Wide Applicability and Good Balance between (De)Localization and Left–Right Correlation. J Chem Theory Comput 2020; 16:5645-5657. [DOI: 10.1021/acs.jctc.0c00498] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Haasler
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Toni M. Maier
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Robin Grotjahn
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Simon Gückel
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Institute of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
13
|
Grotjahn R, Furche F, Kaupp M. Development and Implementation of Excited-State Gradients for Local Hybrid Functionals. J Chem Theory Comput 2019; 15:5508-5522. [DOI: 10.1021/acs.jctc.9b00659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|