1
|
Bera A, Sheet D, Paine TK. Iron(II)-α-keto acid complexes of tridentate ligands on gold nanoparticles: the effect of ligand geometry and immobilization on their dioxygen-dependent reactivity. Dalton Trans 2023; 52:1062-1073. [PMID: 36602242 DOI: 10.1039/d2dt02433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two mononuclear nonheme iron(II)-benzoylformate (BF) complexes [(6Me2-Me-BPA)Fe(BF)](ClO4) (1a) and [(6Me3-TPMM)Fe(BF)](ClO4) (1b) of tridentate nitrogen donor ligands, bis((6-methylpyridin-2-yl)methyl)(N-methyl)amine (6Me2-Me-BPA) and tris(2-(6-methyl)pyridyl)methoxymethane (6Me3-TPMM), were isolated and characterized. The structural characterization of iron(II)-chloro complexes indicates that the ligand 6Me2-Me-BPA binds to the iron(II) centre in a meridional fashion, whereas 6Me3-TPMM behaves as a facial ligand. Both the ligands were functionalized with terminal thiol for immobilization on gold nanoparticles (AuNPs), and the corresponding iron(II) complexes [(6Me2-BPASH)Fe(BF)(ClO4)]@C8Au (2a) and [(6Me3-TPMSH)Fe(BF)(ClO4)]@C8Au (2b) were prepared to probe the effect of immobilization on their ability to perform bioinspired oxidation reactions. All the complexes react with dioxygen to display the oxidative decarboxylation of the coordinated benzoylformate, but the complexes supported by 6Me3-TPMM and its thiol-appended ligand display faster reactivity compared to their analogues with the 6Me2-Me-BPA-derived ligands. In each case, an electrophilic iron-oxygen oxidant was intercepted as the active oxidant generated from dioxygen. The immobilized complexes (2a and 2b) display enhanced O2-dependent reactivity in oxygen-atom transfer reactions (OAT) and hydrogen-atom transfer (HAT) reactions compared to their homogeneous congeners (1a and 1b). Furthermore, the immobilized complex 2b displays catalytic OAT reactions. This study supports that the ligand geometry and immobilization on AuNPs influence the dioxygen-dependent reactivity of the complexes.
Collapse
Affiliation(s)
- Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Debobrata Sheet
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
2
|
Abbas G, Zafar ZA, Sonia FJ, Knížek K, Houdková J, Jiříček P, Kalbáč M, Červenka J, Frank O. The Effects of Ultrasound Treatment of Graphite on the Reversibility of the (De)Intercalation of an Anion from Aqueous Electrolyte Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3932. [PMID: 36432218 PMCID: PMC9693535 DOI: 10.3390/nano12223932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Low cycling stability is one of the most crucial issues in rechargeable batteries. Herein, we study the effects of a simple ultrasound treatment of graphite for the reversible (de)intercalation of a ClO4- anion from a 2.4 M Al(ClO4)3 aqueous solution. We demonstrate that the ultrasound-treated graphite offers the improved reversibility of the ClO4- anion (de)intercalation compared with the untreated samples. The ex situ and in situ Raman spectroelectrochemistry and X-ray diffraction analysis of the ultrasound-treated materials shows no change in the interlayer spacing, a mild increase in the stacking order, and a large increase in the amount of defects in the lattice accompanied by a decrease in the lateral crystallite size. The smaller flakes of the ultrasonicated natural graphite facilitate the improved reversibility of the ClO4- anion electrochemical (de)intercalation and a more stable electrochemical performance with a cycle life of over 300 cycles.
Collapse
Affiliation(s)
- Ghulam Abbas
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 183 23 Prague, Czech Republic
- Department of Physical Chemistry and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Zahid Ali Zafar
- Department of Physical Chemistry and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Prague, Czech Republic
- FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, 162 00 Prague, Czech Republic
| | - Farjana J. Sonia
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 183 23 Prague, Czech Republic
| | - Karel Knížek
- FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, 162 00 Prague, Czech Republic
| | - Jana Houdková
- FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, 162 00 Prague, Czech Republic
| | - Petr Jiříček
- FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, 162 00 Prague, Czech Republic
| | - Martin Kalbáč
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 183 23 Prague, Czech Republic
| | - Jiří Červenka
- FZU—Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, 162 00 Prague, Czech Republic
| | - Otakar Frank
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 183 23 Prague, Czech Republic
| |
Collapse
|
3
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Pernik I, Desmecht A, Messerle BA, Hermans S, Riant O. Dendrimeric and Corresponding Monometallic Iridium(III) Catalysts Bound to Carbon Nanotubes Used in Hydroamination Transformations. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Indrek Pernik
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
- Department of Molecular Sciences Macquarie University Sydney NSW 2109 Australia
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Barbara A. Messerle
- Department of Molecular Sciences Macquarie University Sydney NSW 2109 Australia
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST) UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
5
|
Sánchez-Eguía BN, Serrano-Plana J, Company A, Costas M. Catalytic O 2 activation with synthetic models of α-ketoglutarate dependent oxygenases. Chem Commun (Camb) 2020; 56:14369-14372. [PMID: 33150337 DOI: 10.1039/d0cc05942k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron complex bearing the facially capping tridentate 1,4,7-triazacyclononane ligand mimics structural and functional features of alpha-ketoglutarate (α-KG) dependent enzymes, and engages in enzyme-like catalytic O2 activation coupled to α-ketoacid decarboxylation, oxygenating sulfides. This system constitutes a rare case of non-enzymatic catalytic O2 activation, cycling between FeII and FeIV(O).
Collapse
Affiliation(s)
- Brenda N Sánchez-Eguía
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona. Facultat de Ciències, Campus de Montilivi, 17003, Girona, Spain.
| | | | | | | |
Collapse
|